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Abstract

Background: Acute Graft-Versus-Host disease (acute GVHD) is an often fatal,
inflammatory multi-organ disease driven by T cell alloreactivity directed toward host
tissues. One of the chief obstacles to improving outcomes of acute GVHD patients is
timely diagnosis. Currently, acute GVHD is diagnosed clinically, once the symptoms are
fully manifested. However, it is clear that important immunologic events occur prior to
the occurrence of symptoms. A biomarker that could predict disease during the
asymptomatic period could improve patient outcomes by allowing for earlier
intensification of immunosuppressant therapy. Exosomes are an attractive target for
acute GVHD biomarker discovery. They contain a variety of cellular components and
are easily obtained from bodily fluids. Furthermore, the cell types implicated in acute
GVHD pathophysiology produce exosomes with strong immunomodulatory effects.
Methods: A differential centrifugation protocol was developed to isolate exosomes from
cryopreserved plasma. The presence of exosomes in the final pellet was confirmed by
Western blotting of known exosome markers and by electron microscopy. This protocol
was used to isolate exosome-enriched pellets from 5 ml plasma samples obtained on
posttransplantation day 7 from 7 patients (N=7) who had undergone allogeneic
hematopoietic stem cell transplantation. Three of these patients (cases) later developed
severe acute GVHD (grade C or D), whereas 4 patients did not develop acute GVHD of
any grade (controls). Proteomic analysis was performed on exosome pellets using liquid
chromatography-tandem mass spectrometry and iTRAQ labeling, which allowed us to
compare the relative quantities of identified proteins between cases and controls.
Results: We made 33 protein identifications. iTRAQ analysis did not demonstrate any
statistically significant differences between cases and controls. Despite this limitation,
our data did show trends toward differences in the relative abundances of some
proteins. Specifically, there was a trend toward increased IgG3 constant region in cases
(median case:control ratio= 1.36; credible interval of case:control ratio= 0.857, 2.19),
increased lambda light chain constant region in cases (median case:control ratio= 1.35;
credible interval of case:control ratio= 0.844, 2.07) and decreased kappa light chain
constant region in cases (median case:control ratio=0.847; cr edible interval of
case:control ratio=.0586, 1.21). Further statistical analysis to compare the
kappa:lambda ratios in cases compared controls showed that the median case:control
kappa:lambda ratio was 0.63, with a 95% Cl of 0.377, 1.027 (p=0.011). Conclusion:
Differences in kappa:lambda ratios, early after allogeneic hem atopoietic stem cell
transplantation may be predictive of the development of acute GVHD. Future studies
will be directed toward validation of these results.
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Introduction

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is curative
for a variety of malignant and non-malignant hematologic conditions. The most
important complication resulting from this procedure is acute Graft-Versus-Host
disease (acute GVHD), an inflammatory, multi-organ disease driven by T-cell
alloreactivity directed toward host tissues. The treatment of choice, high dose
corticosteroids, is often ineffective, and acute GVHD is consequently the leading
cause of non-relapse mortality in patients who have undergone allo-HSCT. One
of the most significant barriers to the adequate treatment of acute GVHD is timely
initiation of therapy, which is limited by current methods of diagnosis. Acute
GVHD is diagnosed on clinical grounds, once the manifestations of the disease
are fully established. However, it is clear that key immunologic events occur
during an asymptomatic phase. Thus, a biomarker that could be used to
diagnoses acute GVHD before the appearance of symptoms would be clinically
useful, because it would allow for intensification of immunosuppression earlier in
the course of the disease. Exosomes, membrane bound nanovesicles derived
from the multivesicular body, are an attractive potential source for acute GVHD
biomarker discovery, since they contain cellular components such as protein and
RNA, and are released by a plethora of activated cell types implicated in acute

GVHD. Moreover, they can be isolated from bodily fluids,such as plasma.



Review of the Literature

I. Allogeneic Hematopoietic Stem Cell Transplantation and Graft-Versus-

Host Disease

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents
a curative therapy for many diseases, ranging from rare immunodeficiencies to
hematologic cancers. More than 25,000 transplants are performed annually
worldwide, and its usage is increasing.[1, 2] But allo-HSCT is not without its
risks. Patients who undergo this procedure may develop graft versus host
disease (GVHD). GVHD is the major cause of non-relapse mortality in these
patients. It has two forms, acute and chronic, which traditionally are temporaily
differentiated by how soon they occur following transplantation. The former is the

subject of this research project.

Acute GVHD classically occurs within the first 100 days after the
transplant. Itis a devastating disease in which immunocompetent T lymphocytes
from the donor react with tissues of the recipient, or host. The most important
determinant of a patient’s risk of developing acute GVHD is the degree of
histocompatibility between the donor and the recipient. Therefore, great care is
taken to find a donor who is an HLA match for the recipient, that is someone who

shares the same alleles for the relevant Human Leukocyte Antigen (HLA) loci.



However, even in cases of HLA identity, acute GVHD can still occur due to
the presence of polymorphisms in the less well-characterized minor
histocompatibility antigens.[3] Therefore, in order to futher mitigate the risk of
developing acute GVHD, patients undergoing allo-HSCT are given prophylactic
immunosuppression with a calcineurin inhibitor and either mycophenolate mofetil
or methotrexate. Despite HLA matching and prophylactic immunosuppression,
approximately 40% of allogeneic HSCT recipients will develop acute GVHD

requiring treatment with high dose corticosteroids, the therapy of choice.[2]

The clinical presentation of acute GVHD primarily involves three organs:
the skin, the gastrointestinal tract, and the liver. Clinical manifestations include a
maculopapular rash, nausea, anorexia, bloody or watery diarrhea, severe
abdominal pain, and cholestatic hyperbilirubinemia.[2] The severity of acute
GVHD is determined by the extent of involvement of the aforementioned organ
systems, and cases are assigned a grade (A through D)[4]. Grades C and D are
considered clinically severe and very severe, respectively, and they require
aggressive immunosuppressive treatment. Unfortunately, treatment is often
ineffective, and more than half of cases are refractory.[5] Moreover, more severe
cases are less likely to respond to treatment.[6] Grades C and D acute GVHD

have a 5 year survival rate of 25% and 5%, respectively.[7]

The development of acute GVHD may be understood as a multi-stage
process. The first event is the priming of the immune response, triggered by
tissue damaged during the pretransplant conditioning regimen.[8] It follows a

massive release of proinflammatory cytokines and stimulation of antigen-



presenting-cells (APCs) of both host and donor origin.[9] The second stage is the
activation of donor originated T cell, mostly by interaction with the APCs.[10}

The third stage comprises the expansion of alloreactive T cells and differentiation
into a Th1 or Th2 phenotype.[11] During the fourth stage, activated alloreactive T
cells migrate to target tissues leading to the fifth and last stage, the tissue
damage mediated by massive release of effector molecules such as FasL, TNF-
alpha, TRAIL, interferon-gamma, perforin,and granzymes.[12, 13] [t is the result
of this tissue damage that produces the aforementioned symptoms of acute

GVHD.

One of the main obstacles to the management of acute GVHD is
diagnosis. Currently, it is diagnosed on clinical grounds. However, as mentioned
previously, symptoms do not appear until the fifth and final stage of the disease,
whereas there are several important immunologic events that occur during an
asymptomatic period leading up to the tissue destruction. Thus a biomarker that
could identify patients with severe acute GVHD prior to the occurrence of
symptoms could allow for earlier intensification of immunosuppressive therapy.
This could interrupt the progression of the disease, potentially decreasing
morbidity and mortality. To that end, several groups have worked on identifying

biomarkers of acute GVHD.

Paczesny et al. used an ELISA based approach to screen 120 distinct
candidate proteins in the plasma of individuals with early signs of acute GVHD.
This led to the discovery and validation of an ELISA panel composed of

antibodies to 4 proteins (interleukin-2-receptor-alpha, tumor-necrosis-factor-



receptor-1, interleukin-8, and hepatocyte growth factor), which was able to detect
acute GVHD with a specificity of 94%.[14] However, these results have
limitations. Of particular importance is the fact that this study was conducted
using plasma samples taken from patients who had already been diagnosed
clinically. Thus these biomarkers are in fact confirmatory, not predictive.
Furthermore, patients who had other complications of allogeneic hematopoietic
stem cell transplantation such as veno-occlusive disease and sepsis were
excluded from the study. Therefore, the specificity of this panel may be inflated.
Other studies have been done using high throughput proteomic analysis of urine
and serum, but they are similarly limited by the use of samples from patients who

can already be diagnosed clinically with acute GVHD.[15-17]

One of the difficulties in identifying a biomarker of acute GVHD is
determining potential sources of biomarkers. As already mentioned, previous
studies have been done on plasma, serum and urine. Blood and blood
components seem to be the most logical choice. But proteomic analysis of biood
is inherently problematic since it contains such a large number of proteins, yet
the majority of the proteome is composed of a small number of highly abundant
proteins such as albumin and the immunoglobulins. In order to identify a protein
biomarker of acute GVHD, it is necessary to first deplete the high abundance
proteins, and focus on a more specific source of potential biomarkers. Plasma

exosomes may offer a way to do just that.



Il. Historical Significance of Exosomes

The discovery of plasma exosomes dates back to the late 1960s. At that
time, Wolf et al. published results which demonstrated that the coagulation of
platelet-depleted plasma was due to lipid-rich microparticles produced by
platelets. They showed that the coagulability of platelet-depleted plasma was
eliminated when these microparticles were removed by ultracentrifugation.[18]
Furthermore, they demonstrated by electron microscopy the extrusion of these
particles from intact platelets, and they reported finding platelet-specific
components in the microparticles themselves.[18] Unfortunately, the significance
of their findings was almost entirely overlooked at the time.

The next time that exosomes appeared in the cell biology literature was in
the 1980s, when a group at McGill University observed them in the media of
cultured reticulocytes.[19, 20] At this time, it was already established that
reticulocytes lose their transferrin receptors as they mature into erythrocytes, and
it had been assumed that this was due to receptor internalization and lysosomal
degradation. However, over the course of several years, this group reported
findings which described a novel mode of transferrin receptor loss.[21-24] They
demonstrated that the transferrin receptor is selectively externalized via secretion

of exosomes (see Figure 1).
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generating an endocytic vesicle. Thus, the orientation of membrane proteins is
inverted, with the extracellular components on the inside of the vesicle and the
cytosolic components on the exterior. This vesicle fuses with the early
endosome. Next, as the endosome matures, its membrane invaginates and
buds inwardly, producing an intraluminal vesicle. After the inward budding
process has occurred multiple times, the endosome is filled with numerous
intraluminal vesicles, and it is now called the multivesicular body. Importantly,
the process by which these vesicles are formed resulits in the membrane proteins
having the same orientation that they had in the plasma membrane. The
intraluminal vesicles are nascent exosomes, which are not released until the
membrane of the multivesicular body fuses with the plasma membrane in a
manner similar to exocytosis. There are three salient points that can be taken
away from their discoveries regarding exosome biogenesis. Firstly, the
orientation of exosomal membrane proteins recapitulates that of the cell of origin.
Therefore, they harbor ligands able to bind extracellular receptors. Secondly,
during the invagination of the endosome, exosomes actually engulf cytosolic
components, such as proteins and RNA. This makes them an ideal source of
biomarkers. Finally, it must be noted that this model left many unanswered
questions. Most importantly, it did not explain how proteins are actually sorted
into exosomes. While there are still significant gaps in our understanding of the
process by which proteins are sorted into the intraluminal vesicles of the

multivesicular body, much can be said about this topic.
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vesicles. For example, it has been shown that some proteins, including the
transferrin receptor are capable of independent interaction with the ESCRT
complex.[28] Additionally, some proteins can be sorted into the intraluminal
vesicles by ESCRT-independent mechanisms. For example, tetraspanins (e.g.
CD63, CD81) can partition into lipid microdomains.[29] In conclusion, the sorting
of proteins into intraluminal vesicles is a complex process, which is only
beginning to be described.
IV. The Immunobiology of Exosomes

Acute Graft-Versus-Host disease (GVHD) occurs following allogeneic
hematopoietic stem cell transplantation. Briefly, antigen presenting cells (APCs),
of which dendritic cells are the most important, take up alloantigens that have
been liberated during tissue damage. The APCs process these antigens and
present them in an MHC-dependent manner to T lymphocytes. Following
antigen recognition, clonal expansion of T and B cells occurs, generating a
population of cells which are reactive to the transplant recipient’s alloantigens.
These cells cause massive damage to a variety of host tissues. The primary
mediator of tissue damage in acute GVHD is the cytotoxic T lymphocyte. In
summary, the most important cell types in the pathophysiology of acute GVHD
are the dendritic cell, the B lymphocyte the helper T lymphocyte, and the
cytotoxic T lymphocyte. Exosomes produced by the cells of the immune system
have been reviewed elsewhere.[30] However, it is particularly important to note
that dendritic cells, B lymphocytes, and cytotoxic T lymphocytes are known to

produce exosomes, and that these exosomes are functional. Therefore, since
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these are hematologic cells, plasma exosomes are an attractive source for acute
GVHD biomarker discovery.

T lymphocytes

Current research has focused primarily on the effects of exosomes derived
from other cells on T lymphocytes, and consequently little work has been done
on exosomes derived from T lymphocytes themselves. In fact, of all the
leukocytes, exosomes derived from T lymphocytes have been studied the least.
However, there is evidence to suggest that exosomes released by cytotoxic T
lymphocytes play a role in sending the “lethal hit” to target cells.

CD8+ Cytotoxic T lymphocytes contain an organelle called the cytolytic
granule. Originally, it was thought that the cytolytic granule contained soluble
forms of the cytolytic molecules released by cytotoxic T lymphocytes to deliver
the lethal hit to target cells. However, Peters et al. demonstrated that the
cytolytic granule contains vesicles which are secreted, and that these vesicles
contained perforin and granzyme, cytotoxic molecules crucial to the function of
cytotoxic T lymphocytes. Additionally, they showed that the vesicles containied
the T cell receptor, CD8 and CD3.[31-33] While these vesicles were not
specifically called exosomes, it is now clear that they share many of the
characteristics of exosomes. For example, Peters’ group found that the
delimiting membrane of the cytolytic granule was enriched in CD63 and LAMP-1
(CD9), both well-known markers of exosomes.[34] It is not a great logical leap to
hypothesize that these proteins would be present in the vesicles within the

cytolytic granule as well, since they are derived from the cytolytic granule intself.
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In fact, a more recent study found CD63 enrichment in vesicles produced by
activated cytotoxic T lymphocytes. Furthermore, this study demonstrated that
cytotoxic T lymphocytes secrete these vesicles in response to activation via the T
cell receptor (TcR), and that the vesicles themselves contain the TcR/CD3/zeta
complex.[35] Therefore, it is reasonable to hypothesize that exosomes could
have an important role in targeting specific cells during the delivery of the lethal
hit.

B lymphocytes

B lymphocytes recognize specific antigens via the B cell receptor (B¢cR),
which is an IgM or IgD molecule that is inserted into the plasma membrane.
When the BcR recognizes its antigen, the B lymphocyte is activated and
eventually transforms into a plasma cell, with the help of CD4+ T lymphocytes.
The plasma cell produces antibodies and is consequently the effector cell of
humoral immunity. In addition to this function, B lymphocytes can also function
as antigen-presenting cells. It appears that the secretion of exosomes are
implicated in this process.

Antigen primed B lymphocytes, but not resting B lymphocytes are capable
of exosome secretion, and secretion is stimulated by interaction with activated T
lymphocytes.[36] A recent study showed that culturing of B lymphocytes with an
stimulatory anti-CD40 monoclonal antibody resulted in abundant secretion of
exosomes.[37] However, it has not yet been proven that this is the mechanism
by which activated CD4+ T lymphocytes effectuate exosome secretion by B

lymphocytes. Exosomes secreted by B lymphocytes contain MHC-II-peptide
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complexes (pPMHC-Il), and they are enriched in surface immunoglobulins,
predominantly IgM.[37, 38]

As the presence of pMHC-Il complexes implies, B lymphocyte derived
exosomes have an immunomodulatory function. They are capable of stimulating
clonal expansion of T lymphocytes which recognize the pMHC-II present on the
surface of the exosomes.[38] However, more recent results suggest that this
effect may not be seen in naive T lymphocytes, but only after they have been
primed.[36] Their ability to stimulate activated T cells is an interesting finding,
considering that follicular dendritic cells are known to adsorb exosomes
containing pMHC-I1.[39] Thus B lymphocytes in the lymph node may stimulate T
lymphocytes in this indirect mechanism (although it is also plausible that these
pMHC-IlI carrying vesicles are derived from dendritic cells). Finally, since CD40L
appears to stimulate the secretion of exosomes with large amounts of the surface
immunoglobulins IgM and IgD, it is possible that exosomes serve as an
alternative means of degrading surface immunoglobulins during class switching.
This function would be analogous to the function of exosomes as a means for
maturing reticulocytes to externalize the transferrin receptor. Having said all that,
the in vivo function of B lymphocyte derived exosomes remains unclear since
most of the studies performed on B lymphocyte derived exosomes were done in
vitro.

_Dendritic Cell Derived Exosomes

Dendritic cells are the major antigen-presenting cells of the immune system.

They phagocytose antigens, process them, and present them as pMHC-II
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complexes to helper T cells, cytotoxic T lymphocytes and B lymphocytes. Thus,
dendritic cells play a central role in the immune response. Dendritic cell-derived
exosomes may as well. For example, in vivo studies have shown that exosomes
derived from cultured dendritic cells that have been previously pulsed with an
antigen are capable of generating a specific immune response to that antigen
when they are transferred to an unexposed animal. This has been demonstrated
both prophylactically, as in a study which used dendritic cell derived exosomes to
protect from congenital Toxoplasma gondii infection in mice, and therapeutically,
as shown in a study using dendritic cell-derived exosomes to generate an
immune response to existing tumors in a mouse model.[40-42] Despite these
and other results, the immunomodulatory effects of dendritic cell derived
exosomes are only beginning to be elucidated. However, two salient facts are
evident at this point. First, dendritic cell derived exosomes exert their
immunomodulatory effects predominantly indirectly, via interactions with
bystander cells of the immune system. Secondly, the maturation status of the
dendritic cell of origin has a profound influence on the immunomodulatory effects
of the exosomes that it secretes.

A pertinent example of the former is indirect activation of the immune
system, in which dendritic cell derived exosomes elicit an immune response
through interaction with bystander dendritic cells. Early experiments showed that
exosomes derived from immature dendritic cells were able to stimulate naive
CD4+ T cell activation and proliferation both in vitro and in vivo. However, their

immunogenicity required the presence of mature dendritic cells; it was later
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proven that the exosomes transferred functional pMHC-II complexes to
bystander mature dendritic cells, which in turn stimulated CD4+ specific to that
antigen.[43] Similarly, later work demonstrated that immature dendritic cell
derived exosomes were capable of transferring functional pMHC-I complexes to
mature dendritic cells in vitro and in vivo, and that this resulted in a cytotoxic T
lymphocyte response against the melanoma antigen MART-1.[44] In summary, it
appears that dendritic cell derived exosomes are capable of loading mature
dendritic cells with specific pMHC complexes, which direct the immune response
against a specific antigen.

Since it was clear that the transfer of pMHC complexes from dendritic cell
derived exosomes to bystander dendritic cells was the basis for their functionality
as immunomodulators, several studies were then conducted to elucidate the
mechanism of transfer. First, it was discovered that ICAM-1 was necessary for
bystander dendritic cells to bind to dendritic cell derived exosomes.[45] Later on,
it was demonstrated that dendritic cells use LFA-1 to bind to exosomes.[46]
Thus it is now clear that LFA-1/ICAM-1 binding is the mechanism by which
exosomes are bound by bystander dendritic cells. Interestingly, these studies
also showed that internalization and processing of the exosomes by the dendritic
cells was not required for the elicitation of an immune response, although this
does not exclude it from occurring.

A relevant criticism of the work done on the mechanism of exosome uptake
by bystander APCs is that they were done using exosomes derived from mature

dendritic cells, whereas the previous work demonstrating transfer of pMHC
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complexes to bystander cells was done with exosomes derived from immature
dendritic cells. Thus it has not been confirmed that LFA-1/ICAM-1 binding is the
mechanism by which immature dendritic cell derived exosomes are taken up by
bystander dendritic cells. But inference from the evidence below suggests that
this is case. Furthermore, the knowledge that LFA-1/ICAM-1 binding mediates
the interaction of dendritic cell exosomes with bystander cells demands
investigation of the possibility of their interaction with cell types other than
dendritic cells.

It is well-known that T lymphocytes have LFA-1 on their plasma membrane
as well. Therefore it is reasonable to hypothesize that they too could bind to
exosomes derived from dendritic cells. In fact a recent study demonstrated that
CD4+ T lymphocytes use LFA-1 to take up exosomes derived from immature
dendritic cells and that this results in transfer of MHC-II from exosomes to the T
cells.[47] Interestingly, only activated T lymphocytes were able to do so. This
selectivity may be explained by the fact that LFA-1 undergoes a conformational
change when the T lymphocyte transitions from the resting state to the activated
state.[47] These results are significant because they demonstrate the uptake of
immature dendritic cell derived exosomes by bystander cells using the same
mechanism as previously described for mature dendritic cell derived exosomes.
In this case, the bystander cells were activated T lymphocytes, not dendritic celis.
Nevertheless, in addition to demonstrating a novel interaction between dendritic
cells and activated T lymphocytes, it lends credence to the hypothesis that

bystander dendritic cells also bind immature dendritic cell derived exosomes
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using LFA-1. Additionally, this is possibly the mechanism by which all cells bind
to dendritic cell derived exosomes. Furthermore, these results underscore the
complexity of the immunomodulatory effects of dendritic cell derived exosomes.
The ability of activated T lymphocytes to bind to and take up exosomes
significantly increases the complexity of the immunomodulatory effects of
dendritic cell derived exosomes, because it resuilts in the conversion of these
cells into antigen-presenting cells. For example, activated CD4+ T lymphocytes
which have taken up exosomes derived from mature dendritic cells are capable
of stimulating a CD8+ response both in vitro and in vivo.[48] Furthermore, the
findings of Nolte-'t Hoen et al suggest that it may be possible for dendritic cell
derived exosomes to directly stimulate an immune response. In fact, it has been
demonstrated that exosomes derived from immature dendritic cells are capable
of directly inducing in vitro IFN-gamma production (a marker of activation) by
CD8+ T lymphocytes isolated from human peripheral blood.[49] Conversely, it is
possible that the presentation of pMHC complexes from immature dendritic cell
derived exosomes by CD4+ T lymphocytes could lead to downregulation of the
immune response, although this has not yet been demonstrated
experimentally.[47, 50] Therefore, itis clear that at least part of the
immunomodulatory effect of dendritic cell derived exosomes is mediated by
interaction with activated T cells and this must be accounted for in future work.
The clinical potential of dendritic cell derived exosomes is only beginning to
be investigated. In 2005, two papers were published describing the first attempts

to use dendritic cell derived exosomes in tumor vaccines. In short, exosomes
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derived from autologous monocyte derived immature dendritic cells were
administered in four weekly subcutaneous/intradermal injections to patients with
either advanced melanoma or advanced non-small cell lung cancer.[51, 52]
These phase | clinical trials demonstrated the feasibility of large scale production
of dendritic cell derived exosomes, and that their administration resulted in very
limited toxicity. However, while taking into consideration that these trials were
not designed to measure efficacy, it is noteworthy that the data from these trials
do not seem to indicate that vaccination with immature dendritic cell derived
exosomes is capable of eliciting a cellular response leading to tumor eradication.
Of the 24 patients included in these trials, only one demonstrated CD8+ reactivity
to tumor antigens. Interestingly, some patients did respond to therapy, and their
response was due increased natural killer (NK) cell activity. Therefore, the
results of these trials generated some important questions regarding the efficacy
of dendritic cell derived exosome therapy as cancer immunotherapy and its
mechanism of action.

The results of these clinical trials necessitated investigation of the
mechanism by which immature dendritic cell derived exosomes effectuate
increased NK cell activity. Subsequent work has shed some light on this new
area of exosome research. In brief, exosomes derived from immature dendritic
cells harbor ligands which bind the activating receptor NKG2D on the NK cell
membrane. They also contain BAT-3, a pro-apoptotic protein, which is a ligand
for the natural cytotoxicity receptor NKp30.[63, 54] Finally, immature dendritic

cell derived exosomes have IL-15 receptor alpha, which allows them to bind
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soluble IL-15 and trans-present it to NK cells, thereby activating them.[53]
Combined, these results demonstrate that immature dendritic cell derived
exosomes are powerful stimulators of NK cell activity. This potential could be
utilized to increase their efficacy as inducers of tumor immunity.

The lack of a cellular response observed in these trials is paradoxical, but
may be explained by the fact that both of these trials used exosomes derived
from immature dendritic cells. While it is true that both immature and mature
dendritic cells secrete exosomes, there are marked differences between the two.
First, immature dendritic cells secrete 2-3 fold more exosomes than mature
dendritic cells.[45] Conversely, exosomes derived from mature dendritic cells are
50-100 fold more efficient at inducing activation and proliferation of naive CD4+ T
cells in vitro and in vivo.[45] The disparity in immunogenicity is likely explained
by differences in the amounts of MHC and costimulatory molecules. Specifically,
exosomes derived from mature dendritic cells had higher amounts of ICAM-1,
CD86, 2-3 times more MHC-Il, and 1.5 times more pMHC-l| complexes in
comparison to immature dendritic cells. In contrast, exosomes derived from
immature dendritic cells had increased amounts of MFG-E8 and slightly more
MHC-1.[45] Itis important to note that low amounts of costimulatory molecules
found in immature dendritic cell derived exosomes could result in T cell anergy
and downregulation of the immune response. In fact, a recent study
demonstrated that immature dendritic cell derived exosomes were capable of
mitigating cardiac allograft rejection in a rat model , suggesting that they may

have tolerogenic qualities.[65] Therefore, there is a need for the systematic
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comparison of the in vivo effects of exosomes derived from immature dendritic
cells and those derived from mature dendritic cells.

The final element of research on dendritic cell derived exosomes is the
use of combination pharmaceutical agents and dendritic cell derived exosomes.
This is a relatively new concept, but preliminary evidence indicates that it could
be a clinically useful avenue to explore. A good example of the interaction of
these two therapies is seen in the cardiac allograft study that was previously
cited. In that particular study, immature dendritic cell derived exosomes alone
delayed MHC-mismatched cardiac allograft rejection in a rat model.[55]
However, a later study by that same group demonstrated the effects of the
combination of immature dendritic cell derived exosomes with LF15-019, a novel
NF-kB inhibitor that is a known tolerogen. Combination of the two was shown to
induce long-term tolerance.[55] Synergy between exosome therapy and
pharmacologic immunomodulators has also been observed elsewhere.
Specifically, it has been demonstrated that coadministration of pathogen-
associated molecular pattern molecules (PAMPs), which induce dendritic cell
maturation in vivo, with dendritic cell derived exosomes in tumor vaccination is
superior to vaccination with exosomes alone.[57, 58] Additionally,
cyclophosphamide, which is known to inhibit regulatory T lymphocyte activity,
has been shown to improve tumor rejection when administered in combination
with dendritic cell derived exosomes.[58-60] Thus the combination of

immunomodulators with dendritic cell derived exosomes may be able increase
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their efficacy. This will be an important component of future exosome
immunotherapy research.

The preponderance of evidence shows that dendritic cell derived exosomes
are powerful immunomodulators. They harbor functional peptide-MHC
complexes, and are capable of eliciting an immune response either through
direct stimulation of MHC-restricted T lymphocytes, or, more commonly, indirectly
through the transfer of pMHC complexes to bystander antigen-presenting cells.
They are also able to stimulate NK cell activity, and their immunomodulatory
effects are synergistic with pharmacotherapy. In the future, dendritic cell derived
exosomes may be clinically useful tool in cancer immunotherapy, as well as other
forms of immunotherapy.

V. Exosomes and Biomarker Discovery

As previously stated, exosomes contain specific components derived from
the cell of origin. Furthermore, they are readily isolated from many biological
fluids. The following table lists some of the recent advances in biomarker
discovery using exosomes. Table 1 is a list of recently published papers in the
field of exosome-based biomarker discovery. Complete bibliographic information
may be found in the list of references on page 59.[61-69] It is clear that others
have had significant success identifying biomarkers associated with exosomes.
Given their results, and the data which demonstrate a role for exosomes in
immunomodulation, we hypothesized that proteomic profiling of plasma

exosomes would yield a potential biomarker of acute GVHD.
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Table 1. Recent Publications in Exosome-Based Biomarker Discovery[61-69]

~ Jurinary exosomes contain RNA profile (including rRNA, miRNA,

Nucleic acids within MirandalKidney
urinary KC International; and mRNA) similar to that of kidney tissue
exosomes/microvesicles April 2010
are potential markers for
renal disease
Detection of microRNA [Hunter PLoS One |lood |miRNA was isolated from plasma exosomes of normal subjects
expression in human M 2008
peripheral blood
microvesicles
icroRNA signatures of [Taylor Gynecologic plood |[miRNA profiles of tumor derived plasma exosomes were found
umor-derived exosomes DD Oncology to be similar to tumor tissue. Exosomes are therefore potential
s diagnostic biomarkers 2008 isurrogates for obtaining biomarkers.
f ovarian cancer
Urinary exosomal Zhou H [Kidney urine  [The transcription factors ATF3 and WT-1 were found to be
ranscription factors, a International; elevated in urine exosomes in animal models and human
new class of biomarkers Sept 2008 patients with acute kidney injury and focal segmental
or renal disease glomerulosclerosis, respectively.
Exosomes from human ichael Oral Disease; [saliva miRNA was isolated from salivary exosomes of normal subjects
aliva as a source of A Jan 2010 and a patient with Sjogren syndrome
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Exosomal microRNA: a |[Rabino Clinical Lung [plood |Exosomal small RNA and miRNA were isolated from patients
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exosomes in peripheral 2009 icancer. It had a 51% sensitivity and 98% specificity.
circulation of women with
ovarian cancer
Identification and Pisitkun[Proceedings rine |[Exosomes were isolated from human urine. Known biomarkers
proteomic profiling of T of the of renal and systemic diseases were found in the exosomes,
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Methods

l. Protocol Development

In order to discover plasma exosome-associated biomarkers of acute
GVHD, we first had to develop a protocol for the isolation of exosomes from
cryopreserved plasma. We chose to use a method of differential centrifugation.
To validate the presence of exosomes in the final pellet, we probed for known
exosome markers by Western blot, and we examined the pellet by electron
microscopy.
l.a Differential Centrifugation of Cryopreserved Plasma

Plasma samples were thawed in a 37°C water bath. Samples were then
transferred to 15ml Falcon tubes and diluted to 10% plasma by adding 25.8ml of
1x PBS and 1.2ml of 25x Roche mini-complete EDTA-free protease inhibitor
cocktail (each sample was divided in half). Samples were spun at 1,000xg at
4°C for 5 minutes, to remove any macroparticulate. Supernatant was transferred
to clean tubes and centrifuged for 20 minutes at 17,000xg at 4°C . Supernatant
from this spin was transferred to clean 50ml Falcon tubes and filtered through at
0.22um filter (Steriflip). Filtered supernatant was then centrifuged for 1 hour at
200,000xg at 4°C. Supernatant was removed and pellets were washed and
resuspended in 1ml of 1XPBS. Resuspended pellets were transferred to 1.5ml

Beckman ultracentrifuge tubes and centrifuged for 1 hour at 186,000xg at 4°C.
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Supernatant was aspirated and discarded and the pellets were used for
proteomic analysis.
I.b Extraction of Protein from Exosome Pellets

Proteins were solubilized from the pellet by adding 250ul of homemade
resolubilization buffer (100ul 1.0M Tris-HCI, pH7.4, 20ul of 0.5M EDTA, 2.4g urea,

50ul of 0.005% Triton X-100, 100ul of 10% SDS, 100ul of 100x Calbiochem protease

inhibitor cocktail, and ddH,0 to a final volume of 10ml) to each pellet, followed by
vigorous pipetting. Solubilized proteins were then precipitated using
trichloroacetic acid (TCA) and acetone. Briefly, 32ul of 100% TCA was added to
each 250ul sample and vortexed for about 5min (final concentration of TCA was
11%). Samples were incubated for 1 hour at 4°C. Then, each tube was filled to
the top with ice cold acetone (approximately 1.2ml of acetone was added) and
briefly vortexed. Samples were then incubated overnight at -20°C. The next
morning, samples were centrifuged at 20,000xg at 0°C for 20 minutes, to pellet
the protein. Supernatant was aspirated and pellet was washed 4 times with ice
cold acetone. Acetone washes were done by adding 1ml of fresh ice cold
acetone, briefly vortexing the samples, and centrifuging them for 20 minutes at
20,000xg at 0°C. After the fourth wash, the acetone supernatant was aspirated
and the pellets were dried in a vacuum dessicator. Protein pellets were
redissolved using 50% DIGE no-salt buffer (3.5M urea, 1M thiourea, 2% CHAPS).
l.c Western Blotting of Exosome Markers

1D Gel and Membrane Transfer: 1D gel electrophoresis was performed
using the Invitrogen NUPAGE system. Briefly, the sample was prepared so that it

was 25% LDS sample buffer and 10% Reducing Agent. Samples were heated to
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70°C for 10 min and sonicated in a water bath for 30 seconds. Sample were
loaded into 4-12% Bis-Tris gels and gels were run for 45 minutes at 200V
constant voltage using MOPS running buffer. Gels were removed and proteins
were transferred to PVDF membranes using 100V constant voltage applied for
38 minutes.

Hsp70: PVDF membrane was blocked using 10ml of PBST (PBS 0.1%
Tween) + 5% milk for 40 minutes at room temperature. Blocking solution was
removed, and membrane was incubated for 1 hour at room temperature in 10ml
of 1:5000 primary antibody (mouse anti-Hsp70; Abcam, ab6535, lot # 656321) in
PBST +5% milk. The primary antibody was removed and membrane was
washed 3 times, 10 minutes each, in PBST on an orbital shaker at room
temperature. After washing, the membrane was incubated overnight at 4°C in
10ml 1:20,000 dilution of secondary antibody (goat anti-mouse HRP-conjugate,
Abcam, ab7068, lot # 735618) in PBST +5% milk. The secondary antibody was
removed, and the membrane was washed 3 times, 10 minutes each, in PBST
and 1 time in PBS. The blot was incubated in WestPico ECL substrate for 4
minutes at room temperature and developed after 10 second exposure.

CD63: Eight ug of protein that had been extracted from the plasma
exosome enriched pellet of a normal subject was used for this experiment.
PVDF membrane was blocked using 10ml of blocking solution (PBST+5% milk)
for 1 hour at room temperature. Blocking solution was removed, and the
membrane was incubated for 1 hour at room temperature in 10ml of 1:1000

primary antibody (mouse anti-CD; Santa Cruz Biotechnology, sc-5275, lot #
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J3108) in PBST+5% milk. The primary antibody was removed and the
membrane was washed 3 times, 10 minutes each, in PBST on an orbital shaker
at room temperature. After washing, the membrane was incubated at room
temperature in 10ml 1:20,000 dilution of secondary antibody (goat anti-mouse
HRP-conjugate, Abcam, ab7068, lot # 735618) in PBST+5% milk. The
secondary antibody was removed, and the membrane was washed 3 times, 10
minutes each, in PBST and 1 time in PBS. The blot was incubated in Immobilon
ECL substrate for 4 minutes at room temperature and developed after a 20
second exposure.

CD81: PVDF membrane was blocked using 10ml of PBST+5% milk for 1
hour at room temperature. Blocking solution was removed, and membrane was
incubated for 1 hour at room temperature in 10ml of 1:1000 primary antibody
(mouse anti-CD81; Abcam, ab79559, lot # F2205) in PBST+5% milk. The
primary antibody was removed and the membrane was washed 3 times, 10
minutes each, in PBST on a shaker at room temperature. After washing, the
membrane was incubated at room temperature in 10mi 1:20,000 dilution of
secondary antibody (goat anti-mouse HRP-conjugate, Abcam, ab7068, lot #
735618) in PBST+5% milk. The secondary antibody was removed, and the
membrane was washed 3 times, 10 minutes each, in PBST and 1 time in PBS.
The blot was incubated in Immobilon ECL substrate for 4 minutes at room
temperature and developed after 2 minute exposure.

Aquaporin 1 (AQP1): PVDF membrane was blocked using 10ml of

PBST+5% milk for 70 minutes on orbital at room temperature. Blocking solution
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was removed, and the membrane was incubated for 1 hour at room temperature
in 10ml of 1:1000 primary antibody (mouse anti-AQP1; Santa Cruz
Biotechnology, sc-32738, lot # F2205) in PBST+5% milk. The primary antibody
was removed and membrane was washed 3 times, 10 minutes each, in PBST on
a shaker at room temperature. After washing, the membrane was incubated at
room temperature in 10ml 1:20,000 dilution of secondary antibody (goat anti-
mouse HRP-conjugate, Abcam, ab7068, lot # 735618) in PBST+5% milk. The
secondary antibody was removed, and the membrane was washed 3 times, 10
minutes each, in PBSTand 1 time in PBS. The blot was incubated in Immobilon
ECL substrate for 4 minutes at room temperature and developed after 2 minute
exposure.
l.d Electron Microscopy
After isolation from plasma using the methods described in Section 1.3,

60ul of 2% paraformaldehyde was added to the pellet and it was shipped on ice
overnight to the University of Montana’s Electron Microscope Facility. A Sul
aliquot of the sample was placed on a Formvar-coated copper grid and allowed
to bind for 30 minutes in a humidity chamber at room temperature. After binding
the grids were rinsed with distilled water and stained with 1% Uranyl acetate for
10 minutes. The stain was wicked off and the grids were air-dried. The exosomes
were imaged in a Hitachi H-7100 Transmission Electron Microscope at 75Kv.
Il. Reproducibility Experiment

Large amounts of technical variability would cast significant doubt on the

validity of any data generated using our protocol for the isolation of plasma
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exosomes. We conducted the following experiment to assess the technical
variability of the protocol.
ll.La Samples

Blood was drawn simultaneously from 3 healthy volunteers into ACD-
containing tubes. It was fractionated by centrifugation at 2,000xg 4°C for 10
minutes, and plasma was collected in 1.5ml tubes. Plasma was then flash frozen
in liquid nitrogen and stored at -80°C overnight.
ll.b Isolation of Exosomes from Plasma Samples

For this experiment, 3ml of plasma constituted a sample. One sample was
used for subjects A and B, whereas 3 samples from subject C were used. All 5
samples were processed in parallel. Exosomes were isolated using the protocol
previously described in Section |.a.
ll.c Extraction of Proteins from Exosome Pellets

Protein was recovered from the plasma exosome-enriched pellets in the
same way as described in Section I.b.
Il.d Analysis of Samples

In addition to calculating the protein concentration of each sample, samples
were analyzed by 1D gel electrophoresis and Western blot.

1D gel electrophoresis: Two 1D gels were run for this experiment. 1D gel
electrophoresis was performed using the Invitrogen NuUPAGE system. In short,
15ug of protein was used for each sample. The first gel contained protein
samples obtained from plasma exosome pellets and supernatant from the

200,000xg spin, and the second gel contained protein samples obtained from
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plasma exosome pellets and the plasma from which they were isolated. The
appropriate volume of each sample was transferred to a 0.5ml tube. Then 5ul of
Invitrogen NUPAGE LDS sample buffer and 2ul Invitrogen NUPAGE sample
reducing agent were added to each sample. Total volume was brought to 20ul
by adding milli-Q ddH2O. The final concentrations of LDS sample buffer and
reducing agent were 25% and 10%, respectively. Samples were heated for
10min at 70°C and sonicated for 30 seconds in a water bath. Samples were
loaded onto 4-12% Bis-Tris 12 well gels. Gels were run for 45 minutes at 200V
using MOPS running buffer. After the run was completed, the gel containing
protein from plasma exosome pellets and plasma was stained with SyproRuby,
and the gel containing protein from plasma exosome pellets and supernatant
from 200,000xg spin was transferred to a PVDF membrane for Western blotting.
Protein Staining: The 1D gel containing protein from plasma exosome
pellets and plasma from the above step was stained using the SyproRuby protein
stain. Briefly, the gel was fixed for 30 min in a solution of 10% methanol 7%
acetic acid on a shaker at room temperature. Fixative solution was removed and
SyproRuby stain was added to the gel. The gel was incubated in SyproRuby
overnight at room temperature on a shaker. Following staining, SyproRuby was
removed and the gel was washed in 10% methanol 7% acetic acid for 30 minutes
at room temperature. The gel was then washed for 10 minutes in milli-Q H2O
and imaged using a Bio-Rad Molecular Imager Fx and the softward PD Quest.
Western Blotting: The gel was transferred to a PVDF membrane by using a

constant voltage of 100V for 38 minutes. Following the transfer, the membrane
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was put in 10ml of PBST+5% milk. Blocking was done at room temperature for 1
hour on an orbital. After 1 hour, the blocking solution was removed and the
primary antibody, 10ml of 1:1000 dilution of mouse anti-CD81 (Abcam, ab59477-
100, lot: 790975) in PBST+5% milk, was added. The primary antibody incubated
overnight at 4°C on an orbital shaker. Primary antibody was removed, and the
membrane was washed on a shaker at room temperature three times for 10
minutes each time in PBST. Following the washes, 10ml of the secondary
antibody, 1:20,000 dilution of goat anti-mouse 1gG conjugated with horse radish
peroxidase (Abcam, ab7068-100, lot:735618) in PBST+5% milk was added to
the membrane. After a 1 hour incubation at room temperature, the secondary
antibody was removed, and the membrane was washed three times in PBST for
10 minutes each time. It was washed an additional time for 10 minutes in 1x
PBS. Following the washes, the membrane was incubated for 3 minutes in the
HRP substrate Immobilon (Millipore). The film of the blot was developed after 20
second exposure.
lll. Acute GVHD Biomarker Discovery
lll.a Samples

Seven 5ml frozen plasma samples were obtained from the Hollings Cancer
Center Tissue Biorepository. These samples were collected on day 7
posttransplantation from patients who had undergone allogeneic hematopoietic
stem cell transplantation at MUSC and consented to have deidentified samples
collected for research purposes. Three of these patients developed severe acute

Graft-Versus-Host disease (grades C and D) after the blood was obtained,
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between 15 and 30 days posttransplantation. Four patients did not develop acute

GVHD of any grade.

lll.b Isolation of Exosomes from Plasma Samples

Exosomes were isolated from frozen plasma samples using the protocol

previously described in Section 1.a. A flow chart of the methods is shown in

Figure 3.

lll.c Extraction of Protein from Exosome Pellets

Protein was recovered from the exosome-enriched pellets using the

methods previously described in Section 1.b.

lll.d Proteomic Analysis

Figure 3. Flow Chart of Exosome Isolation Protocol
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Figure 4. Flow Chart of Proteomics Methods
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volumeof 46ul (see Table 2 for information on the contents of each sample
before the iTRAQ protocol was performed). At this point, the samples were
denatured and reduced by adding 1ul of denaturant (2%SDS) and 2ul of reducing
agent (560 mM tris-(2- carboxyethyl)phosphine) from iTRAQ reagent kit (Applied
Biosystems). Samples were incubated at 37°C for 1 hour. Next, 1ul of cysteine-
blocking reagent (200 mM methyl methane- thiosulfonate (MMTS) in isopropanol,
Applied Biosystems) was added to each sample and samples were incubated for
10 minutes at room temperature. Afterward, 10ul of trypsin (25 pg trypsin and
222 ug CaCli2 dissolved in 25ul of milli-Q water) was added to each sample, and
samples were vortexed and incubated overnight at 37°C. In order to ensure that

the sample volume was under 50ul during the labeling step, samples were put in
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a centrifugal vacuum concentrator for 20min following trypsin digestion. Then,
because sample volume was below the optimal volume, 10ul of iTRAQ
dissolution buffer was added to each sample, giving them a volume of 45ul. pH
was measured to ensure that it was above 8 for the labeling reaction. Each vial
of lyophilized iTRAQ label was reconstituted with 50ul of isopropanol and a vial
was added to each sample. Samples were vortexed and incubated at room
temperature in the dark for 2 hours. After labeling, the samples were combined
into a single tube, put on dry ice, and shipped to Protea Biosciences, Inc in
Morgantown, West Virginia. Protea Biosciences performed the liquid
chromatography mass spectrometry according to the following protocol.

Strong Cation Exchange Liquid Chromatography (SCX LC)

The samples were fractionated using SCX ProteaTip SpinTips. Briefly, the
tips were first washed to wet the packing material by adding 50uL of SCX loading
buffer and centrifuging the system at 4000rpm for 2 min. The sample was then
loaded in the spin
tip and centrifuged at 4000rpm for 2 min after which it was washed to elute salts
and other non-retained components by adding 50uL of the rinse solution (5mM
ammonium formate in 10% acetonitrile) to the top of the SpinTip. The SpinTip
was transferred to a new clean centrifuge tube to collect the sample during
elution with 150uL of elution solution. Twelve different elution solutions were
used fractionate the peptides. They were 20, 40, 50, 60, 80, 100, 125, 150, 200
250, 350, 500 mM ammonium formate in 10% acetonitrile. The collected

fractions were cleaned by repeated lyophilizing and
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Results and Discussion

l. Protocol Development

At the beginning of our study, we did not have a protocol in place for the
isolation of exosomes from cryopreserved human plasma. Accordingly, the first
step was for us to develop such a protocol. We did so by searching the exosome
literature, and by consulting with Dr. Viswanathan Palanisamy, an expert on
exosomes here at the Medical University of South Carolina. Eventually, we
settled on a protocol which involved the addition of a protease inhibitor cocktail to
the plasma, dilution of the plasma with 1xPBS, and differential centrifugation.
Hypothetically, this would result in a pellet enriched in exosomes. We sought to
validate the presence of exosomes in the pellet by Western blot probing of known
exosomal markers, and by visualization of the vesicles using electron
microscopy.
l.a Validation of Exosomes in Pellet by Western Blot

In order to validate that exosomes were present in the peliet from the
200,000xg spin, we performed a series of Western blots on pellets obtained from
different plasma samples of the same subject. Appropriate markers were chosen

by consulting Exocarta, an online compendium of exosome research.
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Specifically, we selected two of the proteins most commonly associated with
exosomes, CD63 and CD81 as well as Hsp70 and AQP-1, a protein that is a
component specific to plasma exosomes. See Figures 5a-d for results.
l.b Validation of Exosomes in Pellet by Electron Microscopy

While processing samples for Western blot analysis of exosome markers,
we simultaneously processed a sample for analysis by electron microscopy. The
images shown below (Figures 6a and b) show several membrane-bound vesicles
that are in the same size range as exosomes, 40-100nm in diameter. This
definitively proved that our protocol successfully isolated exosomes from
cryopreserved plasma. However, as can be seen in these images, there is also
a large amount of extraneous material surrounding the exosomes. Therefore, it

is evident that our protocol did not lead to the isolation of pure exosomes.
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Il. Reproducibility Experiment

The goal of our study is to identify differences in the abundance of proteins
in the plasma exosome-enriched pellets of patients who developed acute GVHD
compared to those who did not. Technical variability within the protocol could
artificially increase or decrease protein abundances. Such variability would
therefore produce misleading data. Therefore we designed the following
experiment to assess the technical variability of our protocol.

Plasma was collected from 3 healthy volunteers. For this experiment, 3m|
of plasma was used per sample. One sample was processed for subjects A and
B, whereas 3 samples from subject C were used. All three of these samples
were obtained at the same needle-stick. In all, five 3ml samples of plasma were
used, and all samples were processed in parallel, according the protocol
described in the methods section. This resulted in five plasma exosome
enriched pellets, which could be compared for the assessment of both biologic
and technical variability. Comparison between subjects allowed for the
assessment of biologic variability, whereas comparison of the triplicate samples
obtained from subject C allowed for the assessment of technical variability.

After the final ultracentrifugation step (200,000xg spin), protein was
extracted from each pellet by TCA-acetone precipitation and it was quantified
using the BioRad modified Bradford assay. We determined the amount of
protein recovered from the plasma exosome-enriched pellet of each sample.
The data obtained from this assay are shown in Table 4. There was a large

- amount of variability in the overall protein yield when comparisons were made
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variation was observed in the total amount of protein obtained. Additionally,
while sample C3 had a small shift in the band located at 60kD, the 1D gel
banding patterns appear to be comparable in these 3 samples. In summary,
there is little variability in the amount of protein contained in the pellets from the
three samples from subject C. Additionally, the pellets appear to be comparable
in content, as demonstrated by 1D gel electrophoresis. Similarly, Western blot
analysis found that all three pellets were enriched in CD81 compared to the
supernatant from the 200,000xg spin. These data suggest that the degree of
technical variability in our protocol is acceptable. In conclusion, the results of this
study indicate that the protocol yields a pellet that is similar in content from
person to person, and it reproducibly yields comparable amounts of protein from
the plasma exosome-enriched pellet, when biological variability is controlled.
These data indicate that the protocol is a reliable means to obtain a plasma
exosome-enriched pellet, which can be analyzed with proteomics methods in

order to identify potential biomarkers.
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lll. Acute GVHD Biomarker Discovery Study

The culmination of our study was a biomarker discovery project for acute
Graft-Versus-Host disease (acute GVHD). We used 7 banked plasma samples
that had been obtained on day 7 after allogeneic hematopoietic stem cell
transplantation. Three patients developed severe acute GVHD after this time,
and 4 did not. The protein content of exosome enriched pellets of these patients
were analyzed by matrix-assisted laser desorption ionization tandem mass
spectrometry (MALDI MS/MS). Thirty-seven proteins were identified with 66%
confidence and a 1% false discovery rate. The proteins identified are listed in
Table 5.

Our goal was to discover predictive biomarkers of acute GVHD using
proteomic analysis of plasma exosomes. Exosomes are a logical choice for
biomarker discovery projects, because they contain cell-specific components,
and can therefore allow us to understand what is occurring on a cellular level.
However, exosomes are not very abundant in plasma. In order to study them,
they must be concentrated, and the high abundance proteins present in plasma
must be depleted. This is because the high abundance proteins tend to
overshadow lower abundance proteins during proteomic analysis. This is
undesirable because the lower abundance proteins are much more numerous
than the higher abundance ones, and therefore we are much more likely to
identify a biomarker by analyzing them. Unfortunately, many of the proteins that
we identified were high abundance plasma proteins. While this is a limitation of

our data, it must be noted that we cannot exclude the possible association of

46



www.manaraa.com




Perhaps in the future, it would be advisable to treat our samples with a reducing
agent such as dithiothreotol to remove any proteins that may be adherent to the
surface of the exosomes. Similarly, centrifuging the plasma at lower speeds may
reduce the amount of high abundance protein that is pulled down in the
exosome-enriched pellet. Having said all that, the presence of the higher
abundance plasma proteins in the pellets does not exclude the presence of
exosomes in it. While we have no way of knowing for sure with these particular
samples, given our previous electron micrographs and Western blot data, we are
confident that exosomes were present in the pellet. In all likelihood the proteins
in the exosomes that were pulled down during ultracentrifugation were
overshadowed by the higher abundance proteins, which were also pelleted.
Therefore, if this protocol is to be used in the future, steps need to be taken to
purify the pelleted exosomes from the high abundance proteins which are also in
the pellet. This could be be done using a sucrose density gradient or similar
gradient.

Since we were looking for biomarkers of acute GVHD, we were not only
interested in the proteins that we could identify, but also in their relative quantities
between cases and controls. Therefore, the samples were labeled with the
isobaric tag iTRAQ prior to MS/MS analysis. By calculating the intensity of each
of the seven iTRAQ labels for each peptide/protein that we identified, we were
able to determine their relative quantities in each sample. The data generated
from this experiment was further analyzed using iQuantitator, an in-house

statistical software program designed by John Schwacke, PhD. This analysis
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grouped the samples into acute GVHD cases and controls and compared the
relative abundance of sequenced peptides and proteins between the two groups.
The summary figure of this analysis is presented in Figure 9. The dots represent
the median relative abundance in acute GVHD cases. A value of 0.5 would
indicate that the median value for the acute GVHD patients is half that of
controls, and a value of 2 is indicative of the median value for acute GVHD
patients being twice that of controls. A value of 1 indicates that the medians for
the acute GVHD patients is the same as that of controls. The lines extending
from the dot represent credible intervals. The significance of a credible interval is
analogous to that of a confidence interval. In other words, only those proteins
whose credible intervals do not span 1 are really different in abundance between
the two groups.

Notably, the credible intervals for all of the identified proteins are quite
large, and none of the identified proteins had a credible interval that did not cross
1 (see Figure 9). Therefore, using this method, we were not able to identify any
proteins that were definitely differentially abundant between those patients who
developed acute GVHD and those who did not. It appears that width of the
credible intervals is the major cause of our inability to discriminate between the
two groups. This could be due to the large amount of noise present in the
MS/MS spectra for our samples, which may be the result of the parameters used
during MALDI TOF-TOF MS/MS analysis. Despite the fact that this analysis

failed to yield a biomarker that can definitively discriminate between cases and
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controls, the data do yield some interesting clues as to what immunologic events
may be occurring in these patients.

Of particular importance are the credible intervals for Ig lambda C region
and the Ig kappa C region (see Figure 10 for iQuantitator output of the individual
peptides of kappa and lambda). These two proteins make up the constant region
of the immunoglobulin light chains lambda and kappa, respectively. The credible
interval of Ig lambda C region is 0.88-2.1, and the median value is 1.35. This
indicates that the median amount of Ig lambda C region is 35% greater in cases
compared to controls, but based on this data the true median could be from 88%
to 210% of controls. In contrast, the credible interval of Ig kappa C region is
0.59, 1.21 and median value is 0.85, meaning that the median amount of Ig
kappa C region in cases is 85% that of controls. However, the true median could
lie between 59% and 121% of controls. Because these credible intervals include
1, the data do not prove that cases and controls have different amounts of kappa
and lambda light chains. However, the data are still significant because there is
a known relationship in the ratio of kappa and lambda light chains. In order to
understand the significance, it is first necessary to briefly review immunoglobulin
structure.

Immunoglobulins are composed of two heavy chains and two light chains.
Heavy chains and light chains each have a variable region and a constant region.
The constant regions are antigenically different, and are the basis for the
classification of immunoglobulins. The constant region of the heavy chain

determines to which class the antibody belongs. A given heavy chain can have
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Figure 9a Relative Quantities of Proteins Identified by More Than One Peptide
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Figure 9b Relative Quantities of Proteins Identified by a Single Peptide
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Figure 9 is the visual output of iQuantitator iTRAQ analysis for identified proteins. Values greater than 1
indicate higher abundance in cases. Values less than one indicate lower abundance in cases, whereas
values greater than 1 indicate higher abundance in cases.
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Figure 10a Relative Quantities of Lambda C Region Peptides

Protain Accassion sp POIB4ZILAC HUNMAN
Mean Expression Ratic  1.35

Median Expression Rato  1.35 B e PP g e

Cradible Interval {0.884, 2.07) i A
Associaled Peptides 5 878 14 14 ADSSPVK
Associated Spectra 6 e -
Coverage NaN

Figure 10b Relative Quantities of Kappa C Region Peptides
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Figure 10 is the visual output of iQuantitator iTRAQ analysis for the identified peptides of lambda
and kappa light chains. Values greater than 1 indicate higher abundance in cases. Values less than
one indicate lower abundance in cases, whereas values greater than 1 indicate higher abundance in
cases.



one of five isotypes: alpha, gamma, mu, delta, and epsilon. Consequently there
are five classes of antibody: alpha (IgA), gamma (IgG), mu (IgM), delta (IgD), and
epsilon (IgE). Additionally, there are two isotypes of immunoglobulin light chains:
kappa and lambda. Therefore, each antibody is comprised of a single isotype of
heavy chain (e.g. gamma), and a single isotype of light chain (e.g. kappa),
although it has two of each chain. The reasons that each antibody is restricted to
having one isotype of heavy chain and one isotype of light chain are complicated
and beyond the scope of this discussion. Suffice it to say that complex genetic
rearrangements that occur during B cell development result in the exclusion of all
of the alleles of the heavy chain and light chain genes except for one of each,
which are used to produce a functional antibody. While it is true that B cells can
switch the class of antibody that they produce by rearranging the genes for the
heavy chain constant region, this does not occur in with light chains. Therefore,
once a B cell begins to make antibodies with a given light chain isotype, that
isotype does not change.

Another salient point is that B cells (and plasma cells) produce excess light
chains during antibody production. The excess light chains are secreted, and
may be found in bodily fluids such as plasma and urine.[70,71] These are called
free light chains. Ordinarily, there are approximately twice as many B cells and
plasma cells that make antibodies containing kappa light chain compared to
lambda light chain. Thus the mean total kappa:lambda in plasmais 1.78 in
normal patients.[72] Total kappa:lambda includes all of the light chains that are

bound up in antibodies, and the free light chains present in plasma. Because of
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Formula 1

Rp P.pPc
Rce  Pyp P

Formula 1 was used to calculate the ratio of treatment effects for kappa:lambda.
Rp is the kappa:lambda ratio in patients who developed acute GVHD, whereas
Rc is the kappa:lambda ratio of patients who did not develop acute GVHD. Py
and P, are the abundances of kappa and lambda respectively.

differences in the rates of plasma clearance of the free light chains, the free
kappa: free lambda ratio is approximately 0.6.[72] The interest in these ratios is
that any aberration thereof is an indicator of monoclonal expansion, since B cells
and plasma cells can only make one of the two light chain isotypes. Thus they
are often used in the diagnosis of plasma cell dyscrasias such as multiple
myeloma.

Knowing this sheds new light on the data from our iTRAQ study. Even
though the credible intervals of the constant regions of lambda light chain and
kappa light chain cross 1, it is intriguing to note that the median value for the
constant region of lambda light chain is up in cases, whereas the median value
for both the constant region and a variable region of kappa light chain is down in
cases. Furthermore, the majority of the distribution of the credible intervals lies
on one side of 1. Given the inverse relationship between kappa and lambda
levels, this would appear to be consistent with a monoclonal expansion, although
we cannot be certain given this data. To test the hypothesis that the
kappa:lambda ratio of the plasma exosome-enriched pellets was different in

cases compared to controls, we took an a posteriori statistical approach.
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Also of importance are the results for the IgG3 constant region. Its credible
interval is 1.86 to 2.2 and its median is 1.36 (see Figure 8 for iQuantitator output
for individual peptides of IgG3 constant region). While this is not statistically
significant, data from a classification tree generated by random forest suggests
that relative 1gG3 levels may be an important distinguishing characteristic
between cases and controls. Random forest uses a subset of the data to
generate a series of classification trees. Each classification tree is then tested
for its accuracy using the rest of the data.‘ The best classification tree that was
generated was able to distinguish between cases and controls with 70%
accuracy. In this classification tree, the variable with the most weight (i.e. the
greatest ability to distinguish between cases and controls) was IgG3. The
importance of potential differences in plasma 1gG3 levels between acute GVHD
cases and controls is apparent given its unique properties. IgG3 is one one of
four subclasses of IgG, which are distinguished from one another by their
antigenically unique constant regions. The most prevalent subclass of IgG in
plasma is IgG1, and IgG3 usually only makes up a small percentage of total IgG.
And increased amounts of IgG3 have been associated with autoimmunity. While
the reasons for this association are not entirely understood, it is plausible that
this is due to its unique structure. The constant region of IgG3 has a longer
hinge region than other IgG subclasses. This increases its effectiveness at fixing
and activating complement. Additionally, the constant region of IgG3 has greater
affinity for the Fc-gamma | receptor than other IgG subclasses. Therefore it is

the most effective at initiating antibody-dependent cellular cytotoxicity and
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opsonization. Together, these qualities suggest that higher levels of circulating
IgG3 could result in the increased tissue damage that is seen in autoimmunity.
Since there is some overlap in the pathophysiology of acute GVHD and
autoimmunity, it seems reasonable that there could be a link between 1gG3 levels
in plasma and the onset of acute GVHD. It is also important to note that the half-
life of IgG3 is considerably shorter than other IgG subtypes. For example, the
half-life of plasma IgG1 is 21 days, whereas 1gG3 has a half-life of 6-7 days. Our
samples were obtained on day 7 posttransplantation. Since approximately 1
week is required for the generation of a primary humoral response, which is
mostly composed of IgM, it is unlikely that any increase in IgG3 after
transplantation is a result of donor B cells reacting against alloantigens.
Furthermore, allogeneic hematopoietic stem cell transplantation is often
associated with dysfunction in humoral immunity, especially early after
transplantation. This makes it even more unlikely that increased 1IgG3 on day 7
posttranslation would be the result of an anti-donor humoral response. Having
said that, it seems more plausible that patients with higher levels of circulating
IgG3 at the time of transplantation are at increased risk of developing acute
GVHD later on. This could be due to increased complement fixation and
activation, which would result in increased tissue damage and subsequent
presentation of alloantigens. With this data, however, we cannot necessarily

make this claim.
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Conclusion and Future Directions

Discovery driven proteomics is a powerful research tool. Its primary use is
the unbiased generation of data that can lead to the formulation of testable
hypotheses. In fact, that was the purpose of this project, to discover potential
early biomarkers of acute Graft-Versus-Host disease (GVHD) that could be
validated in later work. The results of our study indicate that markers of B cell
activation and proliferation might be useful diagnostic tools early after allogeneic
hematopoietic stem cell transplantation. They are part of a growing body of
evidence that suggests a role for B celis in the pathogenesis of acute GVHD.
Specifically, it has been demonstrated that refractory acute GVHD may respond
to rituximab therapy (rituximab is an anti-CD20 monoclonal antibody that targets
B celis).[73] Additionally, administration of rituximab during the
pretransplantation conditioning regimen or soon after transplantation has been
shown to decrease the incidence of acute GVHD.[74-76] In light of our results
and the published results of other studies, we hypothesize that analysis of
kappa:lambda ratios early after allogeneic hematopoietic stem cell
transplantation can be used to predict later diagnosis of severe acute GVHD. In
order to test this hypothesis, we propose the following validation study. We will
obtain blood samples on posttransplantation days 0, 7, and 21from patients who
have undergone allogeneic hematopoietic stem cell transplantation. We will also

obtain sample at the time of acute GVHD diagnosis. From these samples, we wil
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quantify kappa and lambda light chains using the protocol that has been
presented in here. This will allow us to validate the clinical utility of using kappa:
lambda light chain ratios of the plasma exosome-enriched pellet to predict the
occurrence of severe acute GVHD. We also propose to analyze these same
samples with commercially available serum light chain test in order to determine
if similar results can be obtained using these tests. Finally, we will use the
samples obtained at the time of diagnosis to determine if kappa:lambda ratios
remain aberrant during later stages of the disease. Data from these tests will be
used to determine if kappa:lambda ratios are predictive of the development of

acute GVHD.
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iTRAQ Data Analysis Report
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1 Introduction

This document summarizes an analysis of relative protein expression using iTRAQ. The reporter
ion peak area measurements supplied by the ABI software are used to estimate treatment-dependent
peptide and protein relative expression. Estimation is accomplished using a Bayesian approach
with the model given below. The document includes a protein relative expression summary and

a per-protein detailed analysis. The document is internally hyperlinked and linked externally to
NCBI.

2 Experiment and Model Description

2.1 Experiment Design

The report summarizes data from one or more iTRAQ experiments addressing a common com-
parison. The experiment design, used in this analysis, is given in the table below.

Experiment Treatment Channel Sample

1 A Control 113 S1
2 A Case 114 S2
3 A Case 115 S3
4 A Control 116 S4
5 A Control 117 S5
6 A Control 118 S6
7 A Case 119 S7
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2.2 Input Files

Data for this analysis was extracted from the following tandem mass spectra (MSMS) summary
files.
Experiment MSMS Summary File
A 07.06.10_MUSC.csv

2.3 Statistical Model

The following statistical model was used to estimate the treatment-dependent effects.
Loglintensity © Channel + Spectrum + Protein + Peptide + Protein:Treatment + Peptide:Treatment

3 Data Summary

The data supplied in the MSMS summary is filtered to remove unidentified proteins, contaminants,
and peptides containing selected modifications. The following table sumarizes the data provided
and used in the analysis.

A Combined
Supplied Spectra 1106 1106
Unidentified Spectra 857 857
Disallowed Modifications 2 2
Spectra from Contaminants 4 4
Missing Data 13 13
Low Confidence Spectra 857 857
Degenerate Peptides 46 46
Remaining Spectra 184
Unique Proteins 30
Unique Peptides 120
Model R? 0.752

4 Protein Summary
Each protein identified in one or more of the MSMS summaries is listed below in decreasing order

of expression change magnitude. The median and estimated credible interval for each protein is
given to the left in the table. Proteins identified by a single peptide are listed in a separate table.

4.1 ldentified Proteins

iTRAQ Data Analysis Report 2
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