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Abstract 

Backgrou nd: Acute Graft-Versus-Host disease (acute GVH D) is an often fatal, 
inflammatory multi-organ diseas e driven by T cell alloreactivity directed toward host 
tissues. One of the chief obstacles to improving outcomes of acute GVHD patients is 
timely diagnosis. Currently, acute GVHD is diagnosed clinically, once the symptoms are 
fully manifested. However, it is clear that important immunologic events occur prior to 
the occurrence of symptoms. A biomarker that could predict disease during the 
asymptomatic period could improve patient outcom es by allowing for earlier 
intensification of immunosuppressant therapy. Exosomes are an attractive target for 
acute GVHD biomarker discovery. They contain a variety of cellular components and 
are easily obtained from bodily fluids. Furthermore, the cell types implicated in acute 
GVHD pathophysiology produce exosomes with strong immunomodulatory effects. 
Methods: A differential centrifugation protocol was developed to isola te exosomes from 
cryopreserved plasma. The presence of exosomes in the final pellet was confirmed by 
Western blotting of known exosome markers and by electron microscopy. This protocol 
was used to isolate exosome-enriched pellets from 5 ml plasma samples obtained on 
posttransplantation day 7 from 7 patients (N=7) who had undergone allogeneic 
hematopoietic stem cell transplantation. Three of these patients (cases) later developed 
severe acute GVH D (grade C or D), whereas 4 patients did not develop acute GVH D of 
any grade (controls). Proteom ic analysis was performed on exosome pellets using liquid 
chromatography-tandem mass spectrometry and iTRAQ labeling, which allowed us to 
compare the relative quantities of identified proteins between cases and controls. 
Results: We made 33 protein identifications. iTRAQ analysis did not demonstrate any 
statistically significant differences between cases and controls. Despite this Ii mitation, 
our data did show trends toward differences in the relative abundances of some 
proteins. Specifically, there was a trend toward increased IgG3 constant region in cases 
(median case:control ratio= 1.36; credible interval of case:control ratio= 0.857, 2.19), 
increased lam bda light chain constant region in cases (median case:control ratio= 1 .35; 
credible interval of case:control ratio= 0.844,2.07) and decreased kappa light chain 
constant region in cases (median case:control ratio=O.847; credible interval of 
case:control ratio=.0586, 1.21). Further statistical analysiS to compare the 
kappa:lambda ratios in cases compared controls showed that the median case:control 
kappa:lambda ratio was 0.63, with a 95% CI of 0.377, 1.027 (p=0.011). Conclusion: 
Differences in kappa:lambda ratios, early after allogeneic hematopoietic stem cell 
transplantation may be predictive of the development of acute GVHD. Future studies 
will be directed toward validation of these results. 
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Introduction 

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is curative 

for a variety of malignant and non-malignant hematologic conditions. The most 

important complication resulting from this procedure is acute Graft-Versus-Host 

disease (acute GVHD), an inflammatory, multi-organ disease driven by T-cell 

alloreactivity directed toward host tissues. The treatment of choice, high dose 

corticosteroids, is often ineffective, and acute GVHD is consequently the leading 

cause of non-relapse mortality in patients who have undergone allo-HSCT. One 

of the most significant barriers to the adequate treatment of acute GVHD is timely 

initiation of therapy, which is limited by current methods of diagnosis. Acute 

GVHD is diagnosed on clinical grounds, once the manifestations of the disease 

are fully established. However, it is clear that key immunologic events occur 

during an asymptomatic phase. Thus, a biomarker that could be used to 

diagnoses acute GVHD before the appearance of symptoms would be clinically 

useful, because it would allow for intensification of immunosuppression earlier in 

the course of the disease. Exosomes, membrane bound nanovesicles derived 

from the multivesicular body, are an attractive potential source for acute GVHD 

biomarker discovery, since they contain cellular components such as protein and 

RNA, and are released by a plethora of activated cell types implicated in acute 

GVHD. Moreover, they can be isolated from bodily fluids,such as plasma. 

1 
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Review of the Literature 

I. Allogeneic Hematopoietic Stem Cell Transplantation and Graft-Versus­

Host Disease 

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents 

a curative therapy for many diseases, ranging from rare immunodeficiencies to 

hematologic cancers. More than 25,000 transplants are performed annually 

worldwide, and its usage is increasing.[1, 2] But allo-HSCT is not without its 

risks. Patients who undergo this procedure may develop graft versus host 

disease (GVHD). GVHD is the major cause of non-relapse mortality in these 

patients. It has two forms, acute and chronic, which traditionally are temporally 

differentiated by how soon they occur following transplantation. The former is the 

subject of this research project. 

Acute GVH D classically occurs within the first 100 days after the 

transplant. It is a devastating disease in which immunocompetent T lymphocytes 

from the donor react with tissues of the recipient, or host. The most important 

determinant of a patient's risk of developing acute GVHD is the degree of 

histocompatibility between the donor and the recipient. Therefore, great care is 

taken to find a donor who is an HLA match for the recipient, that is someone who 

shares the same alleles for the relevant Human Leukocyte Antigen (HLA) loci. 

2 
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However, even in cases of HLA identity, acute GVHO can still occur due to 

the presence of polymorphisms in the less well-characterized minor 

histocompatibility antigens.[3] Therefore, in order to futher mitigate the risk of 

developing acute GVHO, patients undergoing allo-HSCT are given prophylactic 

immunosuppression with a calcineurin inhibitor and either mycophenolate mofetil 

or methotrexate. Despite HLA matching and prophylactic immunosuppression, 

approximately 400/0 of allogeneic HSCT recipients will develop acute GVHO 

requiring treatment with high dose corticosteroids, the therapy of choice.[2] 

The clinical presentation of acute GVHO primarily involves three organs: 

the skin, the gastrointestinal tract, and the liver. Clinical manifestations include a 

maculopapular rash, nausea, anorexia, bloody or watery diarrhea, severe 

abdominal pain, and cholestatic hyperbilirubinemia.[2] The severity of acute 

GVHO is determined by the extent of involvement of the aforementioned organ 

systems, and cases are assigned a grade (A through 0)[4]. Grades C and 0 are 

considered clinically severe and very severe, respectively, and they require 

aggressive immunosuppressive treatment. Unfortunately, treatment is often 

ineffective, and more than half of cases are refractory.[5] Moreover, more severe 

cases are less likely to respond to treatment.[6] Grades C and 0 acute GVHO 

have a 5 year survival rate of 25% and 5%, respectively.[7] 

The development of acute GVHO may be understood as a multi-stage 

process. The first event is the priming of the immune response, triggered by 

tissue damaged during the pretransplant conditioning regimen.[8] It follows a 

massive release of proinflammatory cytokines and stimulation of antigen-

3 
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presenting-cells (APCs) of both host and donor origin.[9] The second stage is the 

activation of donor originated T cell, mostly by interaction with the APCs.[10] 

The third stage comprises the expansion of alloreactive T cells and differentiation 

into a Th1 or Th2 phenotype.[11] During the fourth stage, activated alloreactive T 

cells migrate to target tissues leading to the fifth and last stage, the tissue 

damage mediated by massive release of effector molecules such as FasL, TNF­

alpha, TRAIL, interferon-gamma, perforin,and granzymes.[12, 13] It is the result 

of this tissue damage that produces the aforementioned symptoms of acute 

GVHD. 

One of the main obstacles to the management of acute GVHD is 

diagnosis. Currently, it is diagnosed on clinical grounds. However, as mentioned 

previously, symptoms do not appear until the fifth and final stage of the disease, 

whereas there are several important immunologic events that occur during an 

asymptomatic period leading up to the tissue destruction. Thus a biomarker that 

could identify patients with severe acute GVHD prior to the occurrence of 

symptoms could allow for earlier intensification of immunosuppressive therapy. 

This could interrupt the progression of the disease, potentially decreasing 

morbidity and mortality. To that end, several groups have worked on identifying 

biomarkers of acute GVHD. 

Paczesny et al. used an ELISA based approach to screen 120 distinct 

candidate proteins in the plasma of individuals with early signs of acute GVHD. 

This led to the discovery and validation of an ELISA panel composed of 

antibodies to 4 proteins (interleukin-2-receptor-alpha, tumor-necrosis-factor-
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receptor-1, interleukin-8, and hepatocyte growth factor), which was able to detect 

acute GVHD with a specificity of 94%.[14] However, these results have 

limitations. Of particular importance is the fact that this study was conducted 

using plasma samples taken from patients who had already been diagnosed 

clinically. Thus these biomarkers are in fact confirmatory, not predictive. 

Furthermore, patients who had other complications of allogeneic hematopoietic 

stem cell transplantation such as veno-occlusive disease and sepsis were 

excluded from the study. Therefore, the specificity of this panel may be inflated. 

Other studies have been done using high throughput proteomic analysis of urine 

and serum, but they are similarly limited by the use of samples from patients who 

can already be diagnosed clinically with acute GVHD.[15-17] 

One of the difficulties in identifying a biomarker of acute GVHD is 

determining potential sources of biomarkers. As already mentioned, previous 

studies have been done on plasma, serum and urine. Blood and blood 

components seem to be the most logical choice. But proteomic analysis of blood 

is inherently problematic since it contains such a large number of proteins, yet 

the majority of the proteome is composed of a small number of highly abundant 

proteins such as albumin and the immunoglobulins. In order to identify a protein 

biomarker of acute GVHD, it is necessary to first deplete the high abundance 

proteins, and focus on a more specific source of potential biomarkers. Plasma 

exosomes may offer a way to do just that. 
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II. Historical Significance of Exosomes 

The discovery of plasma exosomes dates back to the late 1960s. At that 

time, Wolf et al. published results which demonstrated that the coagulation of 

platelet-depleted plasma was due to lipid-rich microparticles produced by 

platelets. They showed that the coagulability of platelet-depleted plasma was 

eliminated when these microparticles were removed by ultracentrifugation.[18] 

Furthermore, they demonstrated by electron microscopy the extrusion of these 

particles from intact platelets, and they reported finding platelet-specific 

components in the microparticles themselves.[18] Unfortunately, the significance 

of their findings was almost entirely overlooked at the time. 

The next time that exosomes appeared in the cell biology literature was in 

the 1980s, when a group at McGill University observed them in the media of 

cultured reticulocytes.[19, 20] At this time, it was already established that 

reticulocytes lose their transferrin receptors as they mature into erythrocytes, and 

it had been assumed that this was due to receptor internalization and lysosomal 

degradation. However, over the course of several years, this group reported 

findings which described a novel mode of transferrin receptor loss.[21-24] They 

demonstrated that the transferrin receptor is selectively externalized via secretion 

of exosomes (see Figure 1). 
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The work of Johnstone's group in Montreal made it clear that the 

production of exosomes was not unique to platelets. It also shed light on the fact 

that exosomes have a variety of functions, and that these functions depend on 

the cell which produced them. However, it was more than a decade after 

Johnstone et ai's seminal publication that exosomes really began to attract 

interest in other fields. 

In the mid to late 1990s, it was 

discovered that exosomes were involved in 

many aspects of immunobiology. This led to 

a surge in research oriented toward 

exploring their involvement in the immune 

response, and tumor immunology in 

particular. Several years later, exosome 

research evolved yet again, this time to 

encompass the search for biomarkers of 

disease. 

III. Exosome Biogenesis 

The work of Johnstone et a/. 

significantly impacted our understanding of 

the process by which exosomes are 

formed. They described the basic steps of 

Figure 1 

Figure 1. Exosomes in maturing sheep 
reticulocytes. (A) Immunogold labeling of 
transferrin receptor after 18 hour 
incubation. The gold label is located in the 
multivesicular body, on the intraluminal 
vesicles. (8) After 36 hour incubation, it 
can be seen that the multivesicular body 
fuses with the plasma membrane, 
extruding the vesicles (exosomes). Taken 
from Ref [21 ]. 

exosome formation and release, which are depicted in Figure 2.[22] The first 

step is simple endocytosis. The plasma membrane invaginates and pinches off, 
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generating an endocytic vesicle. Thus, the orientation of membrane proteins is 

inverted, with the extracellular components on the inside of the vesicle and the 

cytosolic components on the exterior. This vesicle fuses with the early 

endosome. Next, as the endosome matures, its membrane invaginates and 

buds inwardly, producing an intraluminal vesicle. After the inward budding 

process has occurred multiple times, the endosome is filled with numerous 

intraluminal vesicles, and it is now called the multivesicular body. Importantly, 

the process by which these vesicles are formed results in the membrane proteins 

having the same orientation that they had in the plasma membrane. The 

intraluminal vesicles are nascent exosomes, which are not released until the 

membrane of the multivesicular body fuses with the plasma membrane in a 

manner similar to exocytosis. There are three salient points that can be taken 

away from their discoveries regarding exosome biogenesis. Firstly, the 

orientation of exosomal membrane proteins recapitulates that of the cell of origin. 

Therefore, they harbor ligands able to bind extracellular receptors. Secondly, 

during the invagination of the endosome, exosomes actually engulf cytosolic 

components, such as proteins and RNA. This makes them an ideal source of 

biomarkers. Finally, it must be noted that this model left many unanswered 

questions. Most importantly, it did not explain how proteins are actually sorted 

into exosomes. While there are still significant gaps in our understanding of the 

process by which proteins are sorted into the intraluminal vesicles of the 

multivesicular body, much can be said about this topiC. 

8 



www.manaraa.com

Figure 2 

! 

Q~ I 

Plasma membrane 

Figure 2. This is a pictorial representation of exosome biogenesis. The 
orientation of the plasma membrane protein (e.g. transferrin) is of particular 
importance. Note that in the exosomes, it is the same as in the original 
plasma membrane. 

Ubiquitination is a key event in protein degradation. It targets proteins for 

both proteasomal and lysosomal degredation. In the latter, ubiquitinated 

membrane proteins that are endocytosed are sorted into intraluminal vesicles as 

the endosome matures into a multivesicular body.[2S] The ESCRT (endosomal 

sorting complex required for transport) complex is crucial to this process. It has 

ubiquitin binding domains, which allow it to attach to the ubiquitinated proteins. 

Then, once invagination occurs, it catalyzes the scission of the endosomal 

membrane, resulting in interior budding.[2S-27] Having said that, it is important 

to note that this is not the only way that proteins can be sorted into intraluminal 
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vesicles. For example, it has been shown that some proteins, including the 

transferrin receptor are capable of independent interaction with the ESCRT 

complex.[28] Additionally, some proteins can be sorted into the intraluminal 

vesicles by ESCRT-independent mechanisms. For example, tetraspanins (e.g. 

CD63, CD81) can partition into lipid microdomains.[29] In conclusion, the sorting 

of proteins into intraluminal vesicles is a complex process, which is only 

beginning to be described. 

IV. The Immunobiology of Exosomes 

Acute Graft-Versus-Host disease (GVHD) occurs following allogeneic 

hematopoietic stem cell transplantation. Briefly, antigen presenting cells (APCs), 

of which dendritic cells are the most important, take up alloantigens that have 

been liberated during tissue damage. The APCs process these antigens and 

present them in an MHC-dependent manner to T lymphocytes. Following 

antigen recognition, clonal expansion of T and B cells occurs, generating a 

population of cells which are reactive to the transplant recipient's alloantigens. 

These cells cause massive damage to a variety of host tissues. The primary 

mediator of tissue damage in acute GVHD is the cytotoxic T lymphocyte. In 

summary, the most important cell types in the pathophysiology of acute GVHD 

are the dendritic cell, the B lymphocyte the helper T lymphocyte, and the 

cytotoxic T lymphocyte. Exosomes produced by the cells of the immune system 

have been reviewed elsewhere.[30] However, it is particularly important to note 

that dendritic cells, B lymphocytes, and cytotoxic T lymphocytes are known to 

produce exosomes, and that these exosomes are functional. Therefore, since 

10 
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these are hematologic cells, plasma exosomes are an attractive source for acute 

GVHD biomarker discovery. 

T Iymphocvtes 

Current research has focused primarily on the effects of exosomes derived 

from other cells on T lymphocytes, and consequently little work has been done 

on exosomes derived from T lymphocytes themselves. In fact, of all the 

leukocytes, exosomes derived from T lymphocytes have been studied the least. 

However, there is evidence to suggest that exosomes released by cytotoxic T 

lymphocytes playa role in sending the "lethal hit" to target cells. 

CDS+ Cytotoxic T lymphocytes contain an organelle called the cytolytic 

granule. Originally, it was thought that the cytolytic granule contained soluble 

forms of the cytolytic molecules released by cytotoxic T lymphocytes to deliver 

the lethal hit to target cells. However, Peters et al. demonstrated that the 

cytolytic granule contains vesicles which are secreted, and that these vesicles 

contained perforin and granzyme, cytotoxic molecules crucial to the function of 

cytotoxic T lymphocytes. Additionally, they showed that the vesicles containied 

the T cell receptor, CDS and CD3.[31-33] While these vesicles were not 

specifically called exosomes, it is now clear that they share many of the 

characteristics of exosomes. For example, Peters' group found that the 

delimiting membrane of the cytolytic granule was enriched in CD63 and LAMP-1 

(CD9), both well-known markers of exosomes.[34] It is not a great logical leap to 

hypothesize that these proteins would be present in the vesicles within the 

cytolytic granule as well, since they are derived from the cytolytic granule intself. 

11 
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In fact, a more recent study found C063 enrichment in vesicles produced by 

activated cytotoxic T lymphocytes. Furthermore, this study demonstrated that 

cytotoxic T lymphocytes secrete these vesicles in response to activation via the T 

cell receptor (TcR), and that the vesicles themselves contain the TcR/C03/zeta 

complex.[35] Therefore, it is reasonable to hypothesize that exosomes could 

have an important role in targeting specific cells during the delivery of the lethal 

hit. 

B Iymphocvtes 

B lymphocytes recognize specific antigens via the B cell receptor (BcR), 

which is an IgM or IgO molecule that is inserted into the plasma membrane. 

When the BcR repognizes its antigen, the B lymphocyte is activated and 

eventually transforms into a plasma cell, with the help of C04+ T lymphocytes. 

The plasma cell produces antibodies and is consequently the effector cell of 

humoral immunity. In addition to this function, B lymphocytes can also function 

as antigen-presenting cells. It appears that the secretion of exosomes are 

implicated in this process. 

Antigen primed B lymphocytes, but not resting B lymphocytes are capable 

of exosome secretion, and secretion is stimulated by interaction with activated T 

lymphocytes.[36] A recent study showed that culturing of B lymphocytes with an 

stimulatory anti-C040 monoclonal antibody resulted in abundant secretion of 

exosomes.[37] However, it has not yet been proven that this is the mechanism 

by which activated CD4+ T lymphocytes effectuate exosome secretion by B 

lymphocytes. Exosomes secreted by B lymphocytes contain MHC-II-peptide 

12 
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complexes (pMHC-II), and they are enriched in surface immunoglobulins, 

predominantly IgM.[37, 38] 

As the presence of pMHC-11 complexes implies, B lymphocyte derived 

exosomes have an immunomodulatory function. They are capable of stimulating 

clonal expansion of T lymphocytes which recognize the pMHC-11 present on the 

surface of the exosomes.[38] However, more recent results suggest that this 

effect may not be seen in naive T lymphocytes, but only after they have been 

primed.[36] Their ability to stimulate activated T cells is an interesting finding, 

considering that follicular dendritic cells are known to adsorb exosomes 

containing pMHC-II.[39] Thus B lymphocytes in the lymph node may stimulate T 

lymphocytes in this indirect mechanism (although it is also plausible that these 

pMHC-1I carrying vesicles are derived from dendritic cells). Finally, since CD40L 

appears to stimulate the secretion of exosomes with large amounts of the surface 

immunoglobulins IgM and IgD, it is possible that exosomes serve as an 

alternative means of degrading surface immunoglobulins during class switching. 

This function would be analogous to the function of exosomes as a means for 

maturing reticulocytes to externalize the transferrin receptor. Having said all that, 

the in vivo function of B lymphocyte derived exosomes remains unclear since 

most of the studies performed on B lymphocyte derived exosomes were done in 

vitro. 

Dendritic Cell Derived Exosomes 

Dendritic cells are the major antigen-presenting cells of the immune system. 

They phagocytose antigens, process them, and present them as pMHC-11 

13 
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complexes to helper T cells, cytotoxic T lymphocytes and B lymphocytes. Thus, 

dendritic cells playa central role in the immune response. Dendritic cell-derived 

exosomes may as well. For example, in vivo studies have shown that exosomes 

derived from cultured dendritic cells that have been previously pulsed with an 

antigen are capable of generating a specific immune response to that antigen 

when they are transferred to an unexposed animal. This has been demonstrated 

both prophylactically, as in a study which used dendritic cell derived exosomes to 

protect from congenital Toxoplasma gondii infection in mice, and therapeutically, 

as shown in a study using dendritic cell-derived exosomes to generate an 

immune response to existing tumors in a mouse model.[40-42] Despite these 

and other results, the immunomodulatory effects of dendritic cell derived 

exosomes are only beginning to be elucidated. However, two salient facts are 

evident at this point. First, dendritic cell derived exosomes exert their 

immunomodulatory effects predominantly indirectly, via interactions with 

bystander cells of the immune system. Secondly, the maturation status of the 

dendritic cell of origin has a profound influence on the immunomodulatory effects 

of the exosomes that it secretes. 

A pertinent example of the former is indirect activation of the immune 

system, in which dendritic cell derived exosomes elicit an immune response 

through interaction with bystander dendritic cells. Early experiments showed that 

exosomes derived from immature dendritic cells were able to stimulate naive 

CD4+ T cell activation and prOliferation both in vitro and in vivo. However, their 

immunogenicity required the presence of mature dendritic cells; it was later 
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proven that the exosomes transferred functional pMHC-11 complexes to 

bystander mature dendritic cells, which in turn stimulated CD4+ specific to that 

antigen.[43] Similarly, later work demonstrated that immature dendritic cell 

derived exosomes were capable of transferring functional pMHC-1 complexes to 

mature dendritic cells in vitro and in vivo, and that this resulted in a cytotoxic T 

lymphocyte response against the melanoma antigen MART-1.[44] In summary, it 

appears that dendritic cell derived exosomes are capable of loading mature 

dendritic cells with specific pMHC complexes, which direct the immune response 

against a specific antigen. 

Since it was clear that the transfer of pMHC complexes from dendritic cell 

derived exosomes to bystander dendritic cells was the basis for their functionality 

as immunomodulators, several studies were then conducted to elucidate the 

mechanism of transfer. First, it was discovered that ICAM-1 was necessary for 

bystander dendritic cells to bind to dendritic cell derived exosomes.[45] Later on, 

it was demonstrated that dendritic cells use LFA-1 to bind to exosomes.[46] 

Thus it is now clear that LFA-1/ICAM-1 binding is the mechanism by which 

exosomes are bound by bystander dendritic cells. Interestingly, these studies 

also showed that internalization and processing of the exosomes by the dendritic 

cells was not required for the elicitation of an immune response, although this 

does not exclude it from occurring. 

A relevant criticism of the work done on the mechanism of exosome uptake 

by bystander APCs is that they were done using exosomes derived from mature 

dendritic cells, whereas the previous work demonstrating transfer of pMHC 

15 
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complexes to bystander cells was done with exosomes derived from immature 

dendritic cells. Thus it has not been confirmed that LFA-1/ICAM-1 binding is the 

mechanism by which immature dendritic cell derived exosomes are taken up by 

bystander dendritic cells. But inference from the evidence below suggests that 

this is case. Furthermore, the knowledge that LFA-1/ICAM-1 binding mediates 

the interaction of dendritic cell exosomes with bystander cells demands 

investigation of the possibility of their interaction with cell types other than 

dendritic cells. 

It is well-known that T lymphocytes have LFA-1 on their plasma membrane 

as well. Therefore it is reasonable to hypothesize that they too could bind to 

exosomes derived from dendritic cells. In fact a recent study demonstrated that 

CD4+ T lymphocytes use LFA-1 to take up exosomes derived from immature 

dendritic cells and that this results in transfer of M HC-II from exosomes to the T 

cells. [47] Interestingly, only activated T lymphocytes were able to do so. This 

selectivity may be explained by the fact that LFA-1 undergoes a conformational 

change when the T lymphocyte transitions from the resting state to the activated 

5tate.[47] These results are significant because they demonstrate the uptake of 

immature dendritic cell derived exosomes by bystander cells using the same 

mechanism as previously described for mature dendritic cell derived exosomes. 

In this case, the bystander cells were activated T lymphocytes, not dendritic cells. 

Nevertheless, in addition to demonstrating a novel interaction between dendritic 

cells and activated T lymphocytes, it lends credence to the hypothesis that 

bystander dendritic cells also bind immature dendritic cell derived exosomes 

16 
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using LFA-1. Additionally, this is possibly the mechanism by which all cells bind 

to dendritic cell derived exosomes. Furthermore, these results underscore the 

complexity of the immunomodulatory effects of dendritic cell derived exosomes. 

The ability of activated T lymphocytes to bind to and take up exosomes 

significantly increases the complexity of the immunomodulatory effects of 

dendritic cell derived exosomes, because it results in the conversion of these 

cells into antigen-presenting cells. For example, activated CD4+ T lymphocytes 

which have taken up exosomes derived from mature dendritic cells are capable 

of stimulating a CD8+ response both in vitro and in vivo.[48] Furthermore, the 

findings of Nolte-It Hoen et al suggest that it may be possible for dendritic cell 

derived exosomes to directly stimulate an immune response. In fact, it has been 

demonstrated that exosomes derived from immature dendritic cells are capable 

of directly inducing in vitro IFN-gamma production (a marker of activation) by 

CD8+ T lymphocytes isolated from human peripheral blood.[49] Conversely, it is 

possible that the presentation of pMHC complexes from immature dendritic cell 

derived exosomes by CD4+ T lymphocytes could lead to downregulation of the 

immune response, although this has not yet been demonstrated 

experimentally. [47, 50] Therefore, it is clear that at least part of the 

immunomodulatory effect of dendritic cell derived exosomes is mediated by 

interaction with activated T cells and this must be accounted for in future work. 

The clinical potential of dendritic cell derived exosomes is only beginning to 

be investigated. In 2005, two papers were published describing the first attempts 

to use dendritic cell derived exosomes in tumor vaccines. In short, exosomes 
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derived from autologous monocyte derived immature dendritic cells were 

administered in four weekly subcutaneous/intradermal injections to patients with 

either advanced melanoma or advanced non-small cell lung cancer.[51 , 52] 

These phase I clinical trials demonstrated the feasibility of large scale production 

of dendritic cell derived exosomes, and that their administration resulted in very 

limited toxicity. However, while taking into consideration that these trials were 

not designed to measure efficacy, it is noteworthy that the data from these trials 

do not seem to indicate that vaccination with immature dendritic cell derived 

exosomes is capable of eliciting a cellular response leading to tumor eradication. 

Of the 24 patients included in these trials, only one demonstrated CD8+ reactivity 

to tumor antigens. Interestingly, some patients did respond to therapy, and their 

response was due increased natural killer (N K) cell activity. Therefore, the 

results of these trials generated some important questions regarding the efficacy 

of dendritic cell derived exosome therapy as cancer immunotherapy and its 

mechanism of action. 

The results of these clinical trials necessitated investigation of the 

mechanism by which immature dendritic cell derived exosomes effectuate 

increased NK cell activity. Subsequent work has shed some light on this new 

area of exosome research. In brief, exosomes derived from immature dendritic 

cells harbor ligands which bind the activating receptor NKG2D on the NK cell 

membrane. They also contain BAT-3, a pro-apoptotic protein, which is a ligand 

for the natural cytotoxicity receptor NKp30.[53, 54] Finally, immature dendritic 

cell derived exosomes have IL-15 receptor alpha, which allows them to bind 
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soluble IL-15 and trans-present it to NK cells, thereby activating them.[53] 

Combined, these results demonstrate that immature dendritic cell derived 

exosomes are powerful stimulators of NK cell activity. This potential could. be 

utilized to increase their efficacy as inducers of tumor immunity. 

The lack of a cellular response observed in these trials is paradoxical, but 

may be explained by the fact that both of these trials used exosomes derived 

from immature dendritic cells. While it is true that both immature and mature 

dendritic cells secrete exosomes, there are marked differences between the two. 

First, immature dendritic cells secrete 2-3 fold more exosomes than mature 

dendritic cells.[45] Conversely, exosomes derived from mature dendritic cells are 

50-100 fold more efficient at inducing activation and proliferation of naive CD4+ T 

cells in vitro and in vivo.[45] The disparity in immunogenicity is likely explained 

by differences in the amounts of MHC and costimulatory molecules. Specifically, 

exosomes derived from mature dendritic cells had higher amounts of ICAM-1, 

CDB6, 2-3 times more MHC-II, and 1.5 times more pMHC-11 complexes in 

comparison to immature dendritic cells. In contrast, exosomes derived from 

immature dendritic cells had increased amounts of MFG-EB and slightly more 

MHC-I.[45] It is important to note that low amounts of costimulatory molecules 

found in immature dendritic cell derived exosomes eQuid result in T cell anergy 

and downregulation of the immune response. In fact, a recent study 

demonstrated that immature dendritic cell derived exosomes were capable of 

mitigating cardiac allograft rejection in a rat model, suggesting that they may 

have tolerogenic qualities.[55] Therefore, there is a need for the systematic 
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comparison of the in vivo effects of exosomes derived from immature dendritic 

cells and those derived from mature dendritic cells. 

The final element of research on dendritic cell derived exosomes is the 

use of combination pharmaceutical agents and dendritic cell derived exosomes. 

This is a relatively new concept, but preliminary evidence indicates that it could 

be a clinically useful avenue to explore. A good example of the interaction of 

these two therapies is seen in the cardiac allograft study that was previously 

cited. In that particular study, immature dendritic cell derived exosomes alone 

delayed MHC-mismatched cardiac allograft rejection in a rat model.[55] 

However, a later study by that same group demonstrated the effects of the 

combination of immature dendritic cell derived exosomes with LF15-019, a novel 

NF-kB inhibitor that is a known tolerogen. Combination of the two was shown to 

induce long-term tolerance.[55] Synergy between exosome therapy and 

pharmacologic immunomodulators has also been observed elsewhere. 

Specifically, it has been demonstrated that coadministration of pathogen­

associated molecular pattern molecules (PAMPs), which induce dendritic cell 

maturation in vivo, with dendritic cell derived exosomes in tumor vaccination is 

superior to vaccination with exosomes alone.[57, 58] Additionally, 

cyclophosphamide, which is known to inhibit regulatory T lymphocyte activity, 

has been shown to improve tumor rejection when administered in combination 

with dendritic cell derived exosomes.[58-60] Thus the combination of 

immunomodulators with dendritic cell derived exosomes may be able increase 
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their efficacy. This will be an important component of future exosome 

immunotherapy research. 

The preponderance of evidence shows that dendritic cell derived exosomes 

are powerful immunomodulators. They harbor functional peptide-MHC 

complexes, and are capable of eliciting an immune response either through 

direct stimulation of MHC-restricted T lymphocytes, or, more commonly, indirectly 

through the transfer of pMHC complexes to bystander antigen-presenting cells. 

They are also able to stimulate NK cell activity, and their immunomodulatory 

effects are synergistic with pharmacotherapy. In the future, dendritic cell derived 

exosomes may be clinically useful tool in cancer immunotherapy, as well as other 

forms of immunotherapy. 

V. Exosomes and Biomarker Discovery 

As previously stated, exosomes contain specific components derived from 

the cell of origin. Furthermore, they are readily isolated from many biological 

fluids. The following table lists some of the recent advances in biomarker 

discovery using exosomes. Table 1 is a list of recently published papers in the 

field of exosome-based biomarker discovery. Complete bibliographic information 

may be found in the list of references on page 59. [61-69] It is clear that others 

have had significant success identifying biomarkers associated with exosomes. 

Given their results, and the data which demonstrate a role for exosomes in 

immunomodulation, we hypothesized that proteomic profiling of plasma 

exosomes would yield a potential biomarker of acute GVHD. 
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Table 1. Recent Publications in Exosome-Based Biomarker Discovery[61-69] 
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Methods 

I. Protocol Development 

In order to discover plasma exosome-associated biomarkers of acute 

GVHD, we first had to develop a protocol for the isolation of exosomes from 

cryopreserved plasma. We chose to use a method of differential centrifugation. 

To validate the presence of exosomes in the final pellet, we probed for known 

exosome markers by Western blot, and we examined the pellet by electron 

microscopy. 

La Differential Centrifugation of Cryopreserved Plasma 

Plasma samples were thawed in a 37°C water bath. Samples were then 

transferred to 1Sml Falcon tubes and diluted to 10% plasma by adding 2S.8ml of 

1x PBS and 1.2ml of 2Sx Roche mini-complete EDTA-free protease inhibitor 

cocktail (each sample was divided in half). Samples were spun at 1,000xg at 

4°C for S minutes, to remove any macroparticulate. Supernatant was transferred 

to clean tubes and centrifuged for 20 minutes at 17,OOOxg at 4°C. Supernatant 

from this spin was transferred to clean SOml Falcon tubes and filtered through at 

0.22um filter (Steriflip). Filtered supernatant was then centrifuged for 1 hour at 

200,OOOxg at 4°C. Supernatant was removed and pellets were washed and 

resuspended in 1 ml of 1 xPBS. Resuspended pellets were transferred to 1.5ml 

Beckman ultracentrifuge tubes and centrifuged for 1 hour at 186,OOOxg at 4°C. 
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Supernatant was aspirated and discarded and the pellets were used for 

proteomic analysis. 

I.b Extraction of Protein from Exosome Pellets 

Proteins were solubilized from the pellet by adding 250ul of homemade 

resolubilization buffer (100uI1.0M Tris-HCI, pH7.4, 20ul of 0.5M EDTA, 2.49 urea, 

50ul of 0.0050/0 Triton X-100, 100ul of 10% SDS, 100ul of 100x Calbiochem protease 

inhibitor cocktail, and ddH20 to a final volume of 10ml) to each pellet, followed by 

vigorous pipetting. Solubilized proteins were then precipitated using 

trichloroacetic acid (TCA) and acetone. Briefly, 32ul of 100% TCA was added to 

each 250ul sample and vortexed for about 5min (final concentration of TCA was 

110/0). Samples were incubated for 1 hour at 4°C. Then, each tube was filled to 

the top with ice cold acetone (approximately 1.2ml of acetone was added) and 

briefly vortexed. Samples were then incubated overnight at -20°C. The next 

morning, samples were centrifuged at 20,000xg at O°C for 20 minutes, to pellet 

the protein. Supernatant was aspirated and pellet was washed 4 times with ice 

cold acetone. Acetone washes were done by adding 1 ml of fresh ice cold 

acetone, briefly vortexing the samples, and centrifuging them for 20 minutes at 

20,000xg at O°C. After the fourth wash, the acetone supernatant was aspirated 

and the pellets were dried in a vacuum dessicator. Protein pellets were 

redissolved using 50% DIGE no-salt buffer (3.5M urea, 1 M thiourea, 20/0 CHAPS). 

I.e Western Blotting of Exosome Markers 

1 D Gel and Membrane Transfer: 1 D gel electrophoresis was performed 

using the Invitrogen NuPAGE system. Briefly, the sample was prepared so that it 

was 25% LDS sample buffer and 10% Reducing Agent. Samples were heated to 
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700e for 10 min and sonicated in a water bath for 30 seconds. Sample were 

loaded into 4-12% Bis-Tris gels and gels were run for 45 minutes at 200V 

constant voltage using MOPS running buffer. Gels were removed and proteins 

were transferred to PVDF membranes using 1 OOV constant voltage applied for 

38 minutes. 

Hsp 70: PVDF membrane was blocked using 10ml of PBST (PBS 0.1 % 

Tween) + 5% milk for 40 minutes at room temperature. Blocking solution was 

removed, and membrane was incubated for 1 hour at room temperature in 10ml 

of 1 :5000 primary antibody (mouse anti-Hsp70; Abcam, ab6535, lot # 656321) in 

PBST +5% milk. The primary antibody was removed and membrane was 

washed 3 times, 10 minutes each, in PBST on an orbital shaker at room 

temperature. After washing, the membrane was incubated overnight at 4°C in 

10ml 1 :20,000 dilution of secondary antibody (goat anti-mouse HRP-conjugate, 

Abcam, ab7068, lot # 735618) in PBST +5% milk. The secondary antibody was 

removed, and the membrane was washed 3 times, 10 minutes each, in PBST 

and 1 time in PBS. The blot was incubated in WestPico ECl substrate for 4 

minutes at room temperature and developed after 10 second exposure. 

CD63: Eight ug of protein that had been extracted from the plasma 

exosome enriched pellet of a normal subject was used for this experiment. 

PVDF membrane was blocked using 10ml of blocking solution (PBST +5% milk) 

for 1 hour at room temperature. Blocking solution was removed, and the 

membrane was incubated for 1 hour at room temperature in 10ml of 1: 1 000 

primary antibody (mouse anti-CD; Santa Cruz Biotechnology, sc-5275, lot # 
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J310B) in PBST+5% milk. The primary antibody was removed and the 

membrane was washed 3 times, 10 minutes each, in PBST on an orbital shaker 

at room temperature. After washing, the membrane was incubated at room 

temperature in 10ml 1 :20,000 dilution of secondary antibody (goat anti-mouse 

HRP-conjugate, Abcam, ab706B, lot # 73561B) in PBST +5% milk. The 

secondary antibody was removed, and the membrane was washed 3 times, 10 

minutes each, in PBST and 1 time in PBS. The blot was incubated in Immobilon 

ECl substrate for 4 minutes at room temperature and developed after a 20 

second exposure. 

C081: PVDF membrane was blocked using 10ml of PBST +5% milk for 1 

hour at room temperature. Blocking solution was removed, and membrane was 

incubated for 1 hour at room temperature in 10ml of 1: 1 000 primary antibody 

(mouse anti-CDB1; Abcam, ab79559, lot # F2205) in PBST +5% milk. The 

primary antibody was removed and the membrane was washed 3 times, 10 

minutes each, in PBST on a shaker at room temperature. After washing, the 

membrane was incubated at room temperature in 10ml 1 :20,000 dilution of 

secondary antibody (goat anti-mouse HRP-conjugate, Abcam, ab706B, lot # 

73561B) in PBST +5% milk. The secondary antibody was removed, and the 

membrane was washed 3 times, 10 minutes each, in PBST and 1 time in PBS. 

The blot was incubated in Immobilon ECl substrate for 4 minutes at room 

temperature and developed after 2 minute exposure. 

Aquaporin 1 (AQP1): PVDF membrane was blocked using 10ml of 

PBST +5% milk for 70 minutes on orbital at room temperature. Blocking solution 
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was removed, and the membrane was incubated for 1 hour at room temperature 

in 10ml of 1 : 1 000 primary antibody (mouse anti-AQP1; Santa Cruz 

Biotechnology, sc-32738, lot # F2205) in PBST +50/0 milk. The primary antibody 

was removed and membrane was washed 3 times, 10 minutes each, in PBST on 

a shaker at room temperature. After washing, the membrane was incubated at 

room temperature in 10ml 1 :20,000 dilution of secondary antibody (goat anti­

mouse HRP-conjugate, Abcam, ab7068, lot # 735618) in PBST +5% milk. The 

secondary antibody was removed, and the membrane was washed 3 times, 10 

minutes each, in PBSTand 1 time in PBS. The blot was incubated in Immobilon 

Eel substrate for 4 minutes at room temperature and developed after 2 minute 

exposure. 

I.d Electron Microscopy 

After isolation from plasma using the methods described in Section 1.a, 

60ul of 2% paraformaldehyde was added to the pellet and it was shipped on ice 

overnight to the University of Montana's Electron Microscope Facility. A Sui 

aliquot of the sample was placed on a Formvar-coated copper grid and allowed 

to bind for 30 minutes in a humidity chamber at room temperature. After binding 

the grids were rinsed with distilled water and stained with 1 % Uranyl acetate for 

10 minutes. The stain was wicked off and the grids were air-dried. The exosomes 

were imaged in a Hitachi H-7100 Transmission Electron Microscope at 75Kv. 

II. Reproducibility Experiment 

large amounts of technical variability would cast significant doubt on the 

validity of any data generated using our protocol for the isolation of plasma 
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exosomes. We conducted the following experiment to assess the technical 

variability of the protocol. 

lI.a Samples 

Blood was drawn simultaneously from 3 healthy volunteers into ACD­

containing tubes. It was fractionated by centrifugation at 2,OOOxg 4°C for 10 

minutes, and plasma was collected in 1.5ml tubes. Plasma was then flash frozen 

in liquid nitrogen and stored at -80°C overnight. 

lI.b Isolation of Exosomes from Plasma Samples 

For this experiment, 3ml of plasma constituted a sample. One sample was 

used for subjects A and B, whereas 3 samples from subject C were used. All 5 

samples were processed in parallel. Exosomes were isolated using the protocol 

previously described in Section I.a. 

Il.c Extraction of Proteins from Exosome Pellets 

Protein was recovered from the plasma exosome-enriched pellets in the 

same way as described in Section I.b. 

Il.d Analysis of Samples 

In addition to calculating the protein concentration of each sample, samples 

were analyzed by 1 D gel electrophoresis and Western blot. 

10 gel electrophoresis: Two 1 D gels were run for this experiment. 1 D gel 

electrophoresis was performed using the Invitrogen NuPAGE system. In short, 

15ug of protein was used for each sample. The first gel contained protein 

samples obtained from plasma exosome pellets and supernatant from the 

200,OOOxg spin, and the second gel contained protein samples obtained from 
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plasma exosome pellets and the plasma from which they were isolated. The 

appropriate volume of each sample was transferred to a O.Sml tube. Then Sui of 

Invitrogen NuPAGE LDS sample buffer and 2ul Invitrogen NuPAGE sample 

reducing agent were added to each sample. Total volume was brought to 20ul 

by adding milli-Q ddH20. The final concentrations of LDS sample buffer and 

reducing agent were 250/0 and 10%, respectively. Samples were heated for 

10min at 70°C and sonicated for 30 seconds in a water bath. Samples were 

loaded onto 4-120/0 Bis-Tris 12 well gels. Gels were run for 45 minutes at 200V 

using MOPS running buffer. After the run was completed, the gel containing 

protein from plasma exosome pellets and plasma was stained with SyproRuby, 

and the gel containing protein from plasma exosome pellets and supernatant 

from 200,000xg spin was transferred to a PVDF membrane for Western blotting. 

Protein Staining: The 1 D gel containing protein from plasma exosome 

pellets and plasma from the above step was stained using the SyproRuby protein 

stain. Briefly, the gel was fixed for 30 min in a solution of 100/0 methanol 7% 

acetic acid on a shaker at room temperature. Fixative solution was removed and 

SyproRuby stain was added to the gel. The gel was incubated in SyproRuby 

overnight at room temperature on a shaker. Following staining, SyproRuby was 

removed and the gel was washed in 10% methanol 7% acetic acid for 30 minutes 

at room temperature. The gel was then washed for 10 minutes in milli-Q H20 

and imaged using a Bio-Rad Molecular Imager Fx and the softward PD Quest. 

Western Blotting: The gel was transferred to a PVDF membrane by using a 

constant voltage of 1 OOV for 38 minutes. Following the transfer, the membrane 
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was put in 10ml of PBST +5% milk. Blocking was done at room temperature for 1 

hour on an orbital. After 1 hour, the blocking solution was removed and the 

primary antibody, 10ml of 1: 1 000 dilution of mouse anti-CD81 (Abcam, ab59477-

100, lot: 790975) in PBST+5% milk, was added. The primary antibody incubated 

overnight at 4°C on an orbital shaker. Primary antibody was removed, and the 

membrane was washed on a shaker at room temperature three times for 10 

minutes each time in PBST. Following the washes, 10ml of the secondary 

antibody, 1 :20,000 dilution of goat anti-mouse IgG conjugated with horse radish 

peroxidase (Abcam, ab7068-100, 10t:735618) in PBST +5% milk was added to 

the membrane. After a 1 hour incubation at room temperature, the secondary 

antibody was removed, and the membrane was washed three times in PBST for 

10 minutes each time. It was washed an additional time for 10 minutes in 1 x 

PBS. Following the washes, the membrane was incubated for 3 minutes in the 

HRP substrate Immobilon (Millipore). The film of the blot was developed after 20 

second exposure. 

III. Acute GVHD Biomarker Discovery 

III.a Samples 

Seven Sml frozen plasma samples were obtained from the Hollings Cancer 

Center Tissue Biorepository. These samples were collected on day 7 

posttransplantation from patients who had undergone allogeneic hematopoietic 

stem cell transplantation at MUSC and consented to have deidentified samples 

collected for research purposes. Three of these patients developed severe acute 

Graft-Versus-Host disease (grades C and D) after the blood was obtained, 
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between 15 and 30 days posttransplantation. Four patients did not develop acute 

GVHD of any grade. 

III.b Isolation of Exosomes from Plasma Samples 

Exosomes were isolated from frozen plasma samples using the protocol 

previously described in Section 1.a. A flow chart of the methods is shown in 

Figure 3. 

IIl.c Extraction of Protein from Exosome Pellets 

Protein was recovered from the exosome-enriched pellets using the 

methods previously described in Section 1.b. 

IIl.d Proteomic Analysis 

Figure 3. Flow Chart of Exosome Isolation Protocol 
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Figure 4. Flow Chart of Proteomics Methods 
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iTRAQ dissolution buffer 

(0.5M triethylammonium 

bicarbonate, Applied 

Biosystems). This 

resulted in a final sample 

volumeof 46ul (see Table 2 for information on the contents of each sample 

before the iTRAQ protocol was performed). At this point, the samples were 

denatured and reduced by adding 1 ul of denaturant (2% SDS) and 2ul of reducing 

agent (50 mM tris-(2- carboxyethyl)phosphine) from iTRAQ reagent kit (Applied 

Biosystems). Samples were incubated at 37°C for 1 hour. Next, 1 ul of cysteine-

blocking reagent (200 mM methyl methane- thiosulfonate (MMTS) in isopropanol, 

Applied Biosystems) was added to each sample and samples were incubated for 

10 minutes at room temperature. Afterward, 10ul of trypsin (25 1J9 trypsin and 

222 IJg CaCI2 dissolved in 25ul of milli-Q water) was added to each sample, and 

samples were vortexed and incubated overnight at 37°C. In order to ensure that 

the sample volume was under 50ul during the labeling step, samples were put in 
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a centrifugal vacuum concentrator for 20min following trypsin digestion. Then, 

because sample volume was below the optimal volume, 10ul of iTRAQ 

dissolution buffer was added to each sample, giving them a volume of 45ul. pH 

was measured to ensure that it was above 8 for the labeling reaction. Each vial 

of lyophilized iTRAQ label was reconstituted with 50ul of isopropanol and a vial 

was added to each sample. Samples were vortexed and incubated at room 

temperature in the dark for 2 hours. After labeling, the samples were combined 

into a single tube, put on dry ice, and shipped to Protea Biosciences, Inc in 

Morgantown, West Virginia. Protea Biosciences performed the liquid 

chromatography mass spectrometry according to the following protocol. 

Strong Cation Exchange Liquid Chromatography (SCX LC) 

The samples were fractionated using sex ProteaTip SpinTips. Briefly, the 

tips were first washed to wet the packing material by adding 50J.JL of sex loading 

buffer and centrifuging the system at 4000rpm for 2 min. The sample was then 

loaded in the spin 

tip and centrifuged at 4000rpm for 2 min after which it was washed to elute salts 

and other non-retained components by adding 50J,JL of the rinse solution (5mM 

ammonium formate in 100/0 acetonitrile) to the top of the SpinTip. The SpinTip 

was transferred to a new clean centrifuge tube to collect the sample during 

elution with 150J,JL of elution solution. Twelve different elution solutions were 

used fractionate the peptides. They were 20,40,50,60,80, 100, 125, 150,200 

250, 350, 500 mM ammonium formate in 100/0 acetonitrile. The collected 

fractions were cleaned by repeated lyophilizing and 
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reconstituting in a 0.1 M acetic acid solution. After final lyophilization, the digests 

were reconstituted in LC run buffer and reversed phase LC was performed. 

Table 2. Sample Composition for iTRAQ Study 

114 

115 

116 

117 

118 

1.78 119 

* All samples had 38.1ulof iTRAQ dissolution buffer 

Reversed Phase Chromatography and MALOI Mass Spectrometry 

Reversed phase LC and MALOI TOF-TOF MS/MS mass spectrometry were 

done using an ABI Tempo LC MALOI mass spectrometer (ABI 4800 MALOI 

TOFITOF). Briefly, digested and lyophilized sample fractions were reconstituted 

in 12 ~L of 0.1 % TFA in diH20. 10ul of each sample fraction was injected onto 

the separation column (Merck Chromolith Cap Rod monolith column - 150 X 

0.1 mm). Each fraction was separated using the buffer gradient program listed in 

Table 3. As peptides eluted off the column, they were spotted onto a MALOI 
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plate. Matrix was spotted onto the target, and protein identifiication by MALOI 

TOF-TOF MS/MS was performed using the following parameters. The mass 

range used was 900-4000. 400 laser shots were fired per spectrum. The 

minimum signal to noise ratio (SIN) for MS acquisition was 10. The minimum 

SIN for MS/MS was 30. Each MALOI spot was interrogated until at least 4 peaks 

in the MS/MS spectra achieved a SIN of 70. Spectra were searched against the 

Uniprot-Swissprot database using the search engine Paragon and ASI 

ProteinPilot 3.0. 

Table 3. Reversed Phase Gradient Program 

10 97 3 

20 20 80 

21 3 97 

22 3 97 

23 97 3 

30 97 3 
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Results and Discussion 

I. Protocol Development 

At the beginning of our study, we did not have a protocol in place for the 

isolation of exosomes from cryopreserved human plasma. Accordingly, the first 

step was for us to develop such a protocol. We did so by searching the exosome 

literature, and by consulting with Dr. Viswanathan Palanisamy, an expert on 

exosomes here at the Medical University of South Carolina. Eventually, we 

settled on a protocol which involved the addition of a protease inhibitor cocktail to 

the plasma, dilution of the plasma with 1 xPBS, and differential centrifugation. 

Hypothetically, this would result in a pellet enriched in exosomes. We sought to 

validate the presence of exosomes in the pellet by Western blot probing of known 

exosomal markers, and by visualization of the vesicles using electron 

microscopy. 

I.a Validation of Exosomes in Pellet by Western Blot 

In order to validate that exosomes were present in the pellet from the 

200,OOOxg spin, we performed a series of Western blots on pellets obtained from 

different plasma samples of the same subject. Appropriate markers were chosen 

by consulting Exocarta, an online compendium of exosome research. 
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Figure 5. Western Blots of Exosome-Associated Proteins 
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Figure 5 is a series of Western blots that 
were done to confirm the presence of 
exosomes in the final pellet that was 
obtained from frozen plasma. 8ug of protein 
was loaded into lanes of blot A. 15ug of 
protein was loaded in each lane for blots B, 
C and D. PE= plasma exosome pellet, 
HELA= HeLa cell lysate, Sup= 186,OOOxg 
supernatant, BSA= Bovine Serum Albumin. 
a) CD63 is a 30-60kD tetraspanin protein. 
HeLa cell lysate was a positive control. b) 
Hsp70 is 70kD protein. HeLa cell lysate 
was a positive control. c) AQP1 is a 26kD 
protein. HeLa cell lysate was a negative 
control. d) CD81 is a 26kD tetraspanin. 
BSA was a negative control, and the pellet 
was compared to supernatant from the spin 
from which it was isolated to show relative 
enrichment of the protein in the pellet. 
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Specifically, we selected two of the proteins most commonly associated with 

exosomes, CD63 and CD81 as well as Hsp70 and AQP-1, a protein that is a 

component specific to plasma exosomes. See Figures 5a-d for results. 

I.b Validation of Exosomes in Pellet by Electron Microscopy 

While processing samples for Western blot analysis of exosome markers, 

we simultaneously processed a sample for analysis by electron microscopy. The 

images shown below (Figures 6a and b) show several membrane-bound vesicles 

that are in the same size range as exosomes, 40-100nm in diameter. This 

definitively proved that our protocol successfully isolated exosomes from 

cryopreserved plasma. However, as can be seen in these images, there is also 

a large amount of extraneous material surrounding the exosomes. Therefore, it 

is evident that our protocol did not lead to the isolation of pure exosomes. 
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Figure 6. Visualization of Plasma Exosomes by 
Transmission Electron Microscopy 

1 OO,OOOx magnification 

l tl o rim. 

1 OO,OOOx magnification 

Figure 6 shows exosomes 
isolated from the cryopreserved 
plasma of a normal subject. After 

• isolation of the plasma exosome-
. enriched pellet, the pellet was 

fixed in 20/0 paraformaldehyde and 
shipped overnight to the 
University of Montana's Electron 
Microscope Facility. 
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II. Reproducibility Experiment 

The goal of our study is to identify differences in the abundance of proteins 

in the plasma exosome-enriched pellets of patients who developed acute GVHD 

compared to those who did not. Technical variability within the protocol could 

artificially increase or decrease protein abundances. Such variability would 

therefore produce misleading data. Therefore we designed the following 

experiment to assess the technical variability of our protocol. 

Plasma was collected from 3 healthy volunteers. For this experiment, 3ml 

of plasma was used per sample. One sample was processed for subjects A and 

B, whereas 3 samples from subject C were used. All three of these samples 

were obtained at the same needle-stick. In all, five 3ml samples of plasma were 

used, and all samples were processed in parallel, according the protocol 

described in the methods section. This resulted in five plasma exosome 

enriched pellets, which could be compared for the assessment of both biologic 

and technical variability. Comparison between subjects allowed for the 

assessment of biologic variability, whereas comparison of the triplicate samples 

obtained from subject C allowed for the assessment of technical variability. 

After the final ultracentrifugation step (200,OOOxg spin), protein was 

extracted from each pellet by TCA-acetone precipitation and it was quantified 

using the BioRad modified Bradford assay. We determined the amount of 

protein recovered from the plasma exosome-enriched pellet of each sample. 

The data obtained from this assay are shown in Table 4. There was a large 

amount of variability in the overall protein yield when comparisons were made 
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Table 4 
Sample Pellet . Total Protei" .. "!Protelnperml 

[tug) of. plasma from subject to subject. In contrast, 
~ 

A'" ..... , .... w·· 78. s·1:·· .. · .... · .. ···· .. :··· ··· ka:·1i ... when comparing the triplicate 
'8 ··· .... ···· ·w·.··.· · .. ·· .. ·•··· ..... :1·1·3:33······· ..... ··· .. ···················37 .. 78·· .. ··· 

samples from subject C, there is C1 ... .................,.. 272.04 .............. ···· .. ·:90.6·8 .. · 

much less variability. The mean 

............ " .......... ~ ......... ~. ...... .......... ...... ........ ...... ..... ......... .. ... .... .. . ... ... ......... . 

C3 
... t??1.29 . I!~. 76 

total protein yield for subject C was 

263.75ug. The standard deviation 
Table 4. This table shows the total protein 
extracted from the plasma exosome-enriched and standard error were 38.98 and 
pellets isolated from 3 subjects. Intersubject 
comparison allows for the assessment of biologic 
variability. There are the samples from subject C, 22.5, respectively. The coefficient 
the comparison of which allows for assessment of 
technical variability. of variation was 0.148. 

This addressed the 

quantitative element of technical variability. The qualitative variability (that is the 

differences in the contents of the pellets) was assessed by 1 0 gel and Western 

blot. The 10 gel was stained with SyproRuby, a protein stain, following 

electrophoresis. This gel (Figure 7) compares the contents of 200,000xg pellets 

from each sample to plasma from the same sample, whereas the Western blot 

compares the pellets to supernatant from the 200,000xg spin, which pellets the 

exosomes down (again from the same sample). The 10 gel allows for the 

comparison of the content of the pellets. The Western blot does this as well, but 

it specifically allows for the demonstration of relative enrichment of CD81, an 

exosomal marker protein, in the pellet versus the supernatant. The 10 gel 

demonstrates that there is a marked difference in the banding pattern of 

200,000xg pellets compared to plasma from the same sample. Compared to 
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Figure 7 Sypro Ruby Stain of 1 0 Gel 

A AP B BP C1 C2 C3 CP ST 

Figure 7 
A, B C1, C2, and C3 designate lanes 
loaded with 15ug of protein from the 
plasma exosome enriched pellets of 
their respective samples. AP, BP 
and CP represent lanes loaded with 
15ug of protein extracted from 
plasma of the same subject. This gel 
stain demonstrates that the content of 
the pellets is similar both between 
subjects, and between the pellets 
obtained from different samples from 
the same subject. 

.-150kD 

plasma, there is consistent 

enrichment of bands 

.-50kD 
around 150kD, 25kD, and 

less than 25kD in the 

.-25kD 
plasma exosome-enriched 

pellets. This is true when comparing 

samples from different subjects, and 

when comparing the triplicate samples 

from subject C. The pellets from subject 

C show remarkably little variation in the 

banding pattern. This indicates that the 

protocol reliably results in the isolation of 

the same population of proteins each 

time. The reliability of the protocol is 

further supported by Figure 8, which is a Western blot probing for CD81, which is 

a tetraspanin that is a known marker of exosomes. The blot compares the 

200,OOOxg pellets of samples B, C1, C2, and C3 to the supernatant from that 

spin. Sample A was omitted because the presence of CD81 in the pellet 

obtained from this subject's plasma had already been validated. This blot 
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Figure 8 
B BS C1 C1S C2 C2S C3 C3S 

Fig 8 is a Western blot probing for CD81, a known exosome marker. 
Lanes contain 15ug of protein obtained from the 200,OOOxg pellet 
(e.g. C1) or the supernatant from that spin (e.g. C1S). This blot 
demonstrates that CD81 is present in the pellets, but not the 
supernatant. 

demonstrates that CD81 is present in the pellets, but not in the supernatant, 

which indicates that the pellet is enriched in exosomes. Again, this is shown both 

from subject to subject and in the pellets obtained from the triplicate samples 

from subject C. 

In summary, there was considerable variability in the total amount of protein 

obtained from the exosome-enriched pellets of the three subjects. This indicates 

that there is biological variability in the amount of protein that is present in the 

exosome-enriched pellets. Comparison of the 1 D gel profiles of the pellets from 

subjects A, B, and C demonstrates that the content of the pellets is similar from 

person to person, although there are some differences in the banding patterns, 

specifically around 60kD and less than 25kD. The relative enrichment of CD81 

seen in the pellet from subjects Band C by Western blot analysis is further 

evidence of the similarity of their contents. Specifically, this demonstrates that 

exosomes were enriched in each of the pellets. Taken together, these data 

indicate that while different amounts of protein are obtained from the exosome-

enriched pellets of different subjects, the pellets contain similar, but not identical, 

proteomes. Importantly, there was a much smaller degree of variability in the 3 

pellets isolated from the plasma samples of subject C. Approximately 15% 
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variation was observed in the total amount of protein obtained. Additionally, 

while sample C3 had a small shift in the band located at 60kD, the 1 D gel 

banding patterns appear to be comparable in these 3 samples. In summary, 

there is little variability in the amount of protein contained in the pellets from the 

three samples from subject C. Additionally, the pellets appear to be comparable 

in content, as demonstrated by 1 D gel electrophoresis. Similarly, Western blot 

analysis found that all three pellets were enriched in CD81 compared to the 

supernatant from the 200,OOOxg spin. These data suggest that the degree of 

technical variability in our protocol is acceptable. In conclusion, the results of this 

study indicate that the protocol yields a pellet that is similar in content from 

person to person, and it reproducibly yields comparable amounts of protein from 

the plasma exosome-enriched pellet, when biological variability is controlled. 

These data indicate that the protocol is a reliable means to obtain a plasma 

exosome-enriched pellet, which can be analyzed with proteomics methods in 

order to identify potential biomarkers. 
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III. Acute GVHD Biomarker Discovery Study 

The culmination of our study was a biomarker discovery project for acute 

Graft-Versus-Host disease (acute GVHD). We used 7 banked plasma samples 

that had been obtained on day 7 after allogeneic hematopoietic stem cell 

transplantation. Three patients developed severe acute GVHD after this time, 

and 4 did not. The protein content of exosome enriched pellets of these patients 

were analyzed by matrix-assisted laser desorption ionization tandem mass 

spectrometry (MALDI MS/MS). Thirty-seven proteins were identified with 66% 

confidence and a 1 % false discovery rate. The proteins identified are listed in 

Table 5. 

Our goal was to discover predictive biomarkers of acute GVHD using 

proteomic analysis of plasma exosomes. Exosomes are a logical choice for 

biomarker discovery projects, because they contain cell-specific components, 

and can therefore allow us to understand what is occurring on a cellular level. 

However, exosomes are not very abundant in plasma. In order to study them, 

they must be concentrated, and the high abundance proteins present in plasma 

must be depleted. This is because the high abundance proteins tend to 

overshadow lower abundance proteins during proteomic analysis. This is 

undesirable because the lower abundance proteins are much more numerous 

than the higher abundance ones, and therefore we are much more likely to 

identify a biomarker by analyzing them. Unfortunately, many of the proteins that 

we identified were high abundance plasma proteins. While this is a limitation of 

our data, it must be noted that we cannot exclude the possible association of 
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Table 5. Proteins Identified in the Plasma Exosome-Enriched Pellets of Allo­
HSCT Patients 

) alpha-2-macroglobulin 
Ig mu chain C region 
Fibrinogen alpha chain 
Fibrinogen beta chain 
Complement C3 
Ig kappa chain C region 
Serum albumin 
Ig lambda chain C region 
Fibronectin 

0) Ig gamma-3 chain C region 
1) von Willebrand factor 

) Ig heavy chain V-III region 
26 
Ig heavy chain V-III region WAS 
Ig heavy chain V-III region POM 
Ig heavy chain V-III region TUR 1~~~~""I~f'~l>1"t 
Ig heavy chain V-III region TIL 
ferritin light chain 
Ig heavy chain V-III region TEl 
Ig heavy chain V-III region BRO 
Dedicator of cytokinesis protein 

12) Complement C4-B 0) Histidine-rich glycoprotein 
13) Complement C4-A 1) Immunoglobulin J chain 
14) C4b-binding protein alpha 2) Ig kappa chain V-I region AU 

ain 3) Ig kappa chain V-I region GAL 
15) Ig alpha-1 chain C region 4) Ig kappa chain V-I region HAU 
16) Ig alpha-2 chain C region 15) Ig kappa chain V-I region 
17) Fibrinogen gamma chain DAUDI 
18) Ig mu heavy chain disease 16) Ig kappa chain V-I region 
rotein LKER 

18) Ig heavy chain V-III region TEl 17) Ig kappa chain V-I region Roy 
19) Ig heavy chain V-III region 18) Ig kappa chain V-I region WAT 

RO 19) Ig kappa chain V-I region Rei 
0) Ig kappa chain V-I region 
1) Ig kappa chain V-I region Scw 
2) Ig kappa chain V-I region 
K101 
3) Ig kappa chain V-I region AG 

these proteins with plasma exosomes. Indeed, as was mentioned in the 

literature review, B lymphocyte derived exosomes are known to harbor 

immunoglobulins, which comprised a large percentage of the proteins that we 

identified. Alternatively, the presence of these high abundance proteins in the 

exosome-enriched pellet could be because these proteins adhere to plasma 

exosomes, or because the speed at which we centrifuged the plasma to isolate 

exosomes (200,OOOxg) was great enough to pull these proteins down as well. 
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Perhaps in the future, it would be advisable to treat our samples with a reducing 

agent such as dithiothreotol to remove any proteins that may be adherent to the 

surface of the exosomes. Similarly, centrifuging the plasma at lower speeds may 

reduce the amount of high abundance protein that is pulled down in the 

exosome-enriched pellet. Having said all that, the presence of the higher 

abundance plasma proteins in the pellets does not exclude the presence of 

exosomes in it. While we have no way of knowing for sure with these particular 

samples, given our previous electron micrographs and Western blot data, we are 

confident that exosomes were present in the pellet. In all likelihood the proteins 

in the exosomes that were pulled down during ultracentrifugation were 

overshadowed by the higher abundance proteins, which were also pelleted. 

Therefore, if this protocol is to be used in the future, steps need to be taken to 

purify the pelieted exosomes from the high abundance proteins which are also in 

the pellet. This could be be done using a sucrose density gradient or similar 

gradient. 

Since we were looking for biomarkers of acute GVHD, we were not only 

interested in the proteins that we could identify, but also in their relative quantities 

between cases and controls. Therefore, the samples were labeled with the 

isobaric tag iTRAQ prior to MS/MS analysiS. By calculating the intensity of each 

of the seven iTRAQ labels for each peptide/protein that we identified, we were 

able to determine their relative quantities in each sample. The data generated 

from this experiment was further analyzed using iQuantitator, an in-house 

statistical software program designed by John Schwacke, PhD. This analysis 
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grouped the samples into acute GVHD cases and controls and compared the 

relative abundance of sequenced peptides and proteins between the two groups. 

The summary figure of this analysis is presented in Figure 9. The dots represent 

the median relative abundance in acute GVHD cases. A value of 0.5 would 

indicate that the median value for the acute GVHD patients is half that of 

controls, and a value of 2 is indicative of the median value for acute GVHD 

patients being twice that of controls. A value of 1 indicates that the medians for 

the acute GVHD patients is the same as that of controls. The lines extending 

from the dot represent credible intervals. The significance of a credible interval is 

analogous to that of a confidence interval. In other words, only those proteins 

whose credible intervals do not span 1 are really different in abundance between 

the two groups. 

Notably, the credible intervals for all of the identified proteins are quite 

large, and none of the identified proteins had a credible interval that did not cross 

1 (see Figure 9). Therefore, using this method, we were not able to identify any 

proteins that were definitely differentially abundant between those patients who 

developed acute GVHD and those who did not. It appears that width of the 

credible intervals is the major cause of our inability to discriminate between the 

two groups. This could be due to the large amount of noise present in the 

MS/MS spectra for our samples, which may be the result of the parameters used 

during MALDI TOF-TOF MS/MS analysis. Despite the fact that this analysis 

failed to yield a biomarker that can definitively discriminate between cases and 

49 



www.manaraa.com

controls, the data do yield some interesting clues as to what immunologic events 

may be occurring in these patients. 

Of particular importance are the credible intervals for Ig lambda C region 

and the Ig kappa C region (see Figure 10 for iQuantitator output of the individual 

peptides of kappa and lambda). These two proteins make up the constant region 

of the immunoglobulin light chains lambda and kappa, respectively. The credible 

interval of Ig lambda C region is 0.88-2.1, and the median value is 1.35. This 

indicates that the median amount of Ig lambda C region is 35% greater in cases 

compared to controls, but based on this data the true median could be from 88% 

to 2100/0 of controls. In contrast, the credible interval of Ig kappa C region is 

0.59, 1.21 and median value is 0.85, meaning that the median amount of Ig 

kappa C region in cases is 85% that of controls. However, the true median could 

lie between 59% and 121 % of controls. Because these credible intervals include 

1 , the data do not prove that cases and controls have different amounts of kappa 

and lambda light chains. However, the data are still significant because there is 

a known relationship in the ratio of kappa and lambda light chains. In order to 

understand the significance, it is first necessary to briefly review immunoglobulin 

structure. 

Immunoglobulins are composed of two heavy chains and two light chains. 

Heavy chains and light chains each have a variable region and a constant region. 

The constant regions are antigenically different, and are the basis for the 

classification of immunoglobulins. The constant region of the heavy chain 

determines to which class the antibody belongs. A given heavy chain can have 
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Figure 9a Relative Quantities of Proteins Identified by More Than One Peptide 
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Figure 9 is the visual output of iQuantitator iTRAQ analysis for identified proteins. Values greater than 1 
indicate higher abundance in cases. Values less than one indicate lower abundance in cases, whereas 
values greater than 1 indicate higher abundance in cases. 
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Figure 10a Relative Quantities of Lambda C Region Peptides 
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Figure 10 is the visual output of iQuantitator iTRAQ analysis for the identified peptides of lambda 
and kappa light chains. Values greater than 1 indicate higher abundance in cases. Values less than 
one indicate lower abundance in cases, whereas values greater than 1 indicate higher abundance in 
cases. 
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one of five isotypes: alpha, gamma, mu, delta, and epsilon. Consequently there 

are five classes of antibody: alpha (lgA), gamma (lgG), mu (lgM), delta (lgD), and 

epsilon (lgE). Additionally, there are two isotypes of immunoglobulin light chains: 

kappa and lambda. Therefore, each antibody is comprised of a single isotype of 

heavy chain (e.g. gamma), and a single isotype of light chain (e.g. kappa), 

although it has two of each chain. The reasons that each antibody is restricted to 

having one isotype of heavy chain and one isotype of light chain are complicated 

and beyond the scope of this discussion. Suffice it to say that complex genetic 

rearrangements that occur during B cell development result in the exclusion of all 

of the alleles of the heavy chain and light chain genes except for one of each, 

which are used to produce a functional antibody. While it is true that B cells can 

switch the class of antibody that they produce by rearranging the genes for the 

heavy chain constant region, this does not occur in with light chains. Therefore, 

once a B cell begins to make antibodies with a given light chain isotype, that 

isotype does not change. 

Another salient point is that B cells (and plasma cells) produce excess light 

chains during antibody production. The excess light chains are secreted, and 

may be found in bodily fluids such as plasma and urine.[70, 71] These are called 

free light chains. Ordinarily, there are approximately twice as many B cells and 

plasma cells that make antibodies containing kappa light chain compared to 

lambda light chain. Thus the mean total kappa:lambda in plasma is 1.78 in 

normal patients.[72] Total kappa:lambda includes all of the light chains that are 

bound up in antibodies, and the free light chains present in plasma. Because of 
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Formula 1 

RL) 

Rc 

Formula 1 was used to calculate the ratio of treatment effects for kappa:lambda. 
Ro is the kappa:lambda ratio in patients who developed acute GVHD, whereas 
Rc is the kappa:lambda ratio of patients who did not develop acute GVHD. PK 

and P" are the abundances of kappa and lambda respectively. 

differences in the rates of plasma clearance of the free light chains, the free 

kappa: free lambda ratio is approximately 0.6.[72] The interest in these ratios is 

that any aberration thereof is an indicator of monoclonal expansion, since B cells 

and plasma cells can only make one of the two light chain isotypes. Thus they 

are often used in the diagnosis of plasma cell dyscrasias such as multiple 

myeloma. 

Knowing this sheds new light on the data from our iTRAQ study. Even 

though the credible intervals of the constant regions of lambda light chain and 

kappa light chain cross 1, it is intriguing to note that the median value for the 

constant region of lambda light chain is up in cases, whereas the median value 

for both the constant region and a variable region of kappa light chain is down in 

cases. Furthermore, the majority of the distribution of the credible intervals lies 

on one side of 1. Given the inverse relationship between kappa and lambda 

levels, this would appear to be consistent with a monoclonal expansion, although 

we cannot be certain given this data. To test the hypothesis that the 

kappa:lambda ratio of the plasma exosome-enriched pellets was different in 

cases compared to controls, we took an a posteriori statistical approach. 
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Figure 11 We used the 

iQuantitator output data 

from our iTRAQ 

experiment to calculate a 

ratio of treatment effects. 

This was done by dividing 

the case kappa:lambda 
o 

0.2 0.4 0.6 0.6 1.0 1.2 -1.4 1.6 ratio by the control 
Effect Ratio (kappa'1ambda) 

Figure 11 is the posterior distribution of Ro/Rc. A 
value of 1 would indicate that the two groups have 
equal kappa:lambda ratios. 

kappa:lambda ratio (see 

Formula 1 for the 

equation) . A value of 1 

would indicate that the two groups are no different. The calculated value from 

our data was 0.63, with a 95% CI of 0.38, 1.03. Using a Bayesian modeling 

approach, we generated a histogram of the posterior distribution of this estimate, 

which is shown in Figure 11. To determine the probability of observing such a 

distribution in our data, we used the same approach to generate a null 

distribution from our data. Briefly, we bootstrap sampled 5,000 pairs of proteins, 

and calculated the ratio of treatment effects and effective z scores for each pair. 

Comparing the kappa:lambda ratio of treatment effects to this null distribution, we 

calculated a p-value of 0.011. Therefore, our data seem to indicate that the day 

7 posttransplantation kappa:lambda ratio differs between patients who later 

develop severe acute GVHD and those who do not. 
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opsonization. Together, these qualities suggest that higher levels of circulating 

IgG3 could result in the increased tissue damage that is seen in autoimmunity. 

Since there is some overlap in the pathophysiology of acute GVHD and 

autoimmunity, it seems reasonable that there could be a link between IgG3 levels 

in plasma and the onset of acute GVHD. It is also important to note that the half­

life of IgG3 is considerably shorter than other IgG subtypes. For example, the 

half-life of plasma IgG1 is 21 days, whereas IgG3 has a half-life of 6-7 days. Our 

samples were obtained on day 7 posttransplantation. Since approximately 1 

week is required for the generation of a primary humoral response, which is 

mostly composed of IgM, it is unlikely that any increase in IgG3 after 

transplantation is a result of donor B cells reacting against alloantigens. 

Furthermore, allogeneic hematopoietic stem cell transplantation is often 

associated with dysfunction in humoral immunity, especially early after 

transplantation. This makes it even more unlikely that increased IgG3 on day 7 

posttranslation would be the result of an anti-donor humoral response. Having 

said that, it seems more plausible that patients with higher levels of circulating 

IgG3 at the time of transplantation are at increased risk of developing acute 

GVHD later on. This could be due to increased complement fixation and 

activation, which would result in increased tissue damage and subsequent 

presentation of alloantigens. With this data, however, we cannot necessarily 

make this claim. 
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Conclusion and Future Directions 

Discovery driven proteomics is a powerful research tool. Its primary use is 

the unbiased generation of data that can lead to the formulation of testable 

hypotheses. In fact, that was the purpose of this project, to discover potential 

early biomarkers of acute Graft-Versus-Host disease (GVHD) that could be 

validated in later work. The results of our study indicate that markers of B cell 

activation and proliferation might be useful diagnostic tools early after allogeneic 

hematopoietic stem cell transplantation. They are part of a growing body of 

evidence that suggests a role for B cells in the pathogenesis of acute GVHD. 

Specifically, it has been demonstrated that refractory acute GVHD may respond 

to rituximab therapy (rituximab is an anti-CD20 monoclonal antibody that targets 

B cells).[73] Additionally, administration of rituximab during the 

pretransplantation conditioning regimen or soon after transplantation has been 

shown to decrease the incidence of acute GVHD.[74-76] In light of our results 

and the published results of other studies, we hypothesize that analysis of 

kappa:lambda ratios early after allogeneic hematopoietic stem cell 

transplantation can be used to predict later diagnosis of severe acute GVHD. In 

order to test this hypothesiS, we propose the following validation study. We will 

obtain blood samples on posttransplantation days 0, 7, and 21from patients who 

have undergone allogeneic hematopoietic stem cell transplantation. We will also 

obtain sample at the time of acute GVHD diagnosis. From these samples, we wil 
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quantify kappa and lambda light chains using the protocol that has been 

presented in here. This will allow us to validate the clinical utility of using kappa: 

lambda light chain ratios of the plasma exosome-enriched pellet to predict the 

occurrence of severe acute GVHD. We also propose to analyze these same 

samples with commercially available serum light chain test in order to determine 

if similar results can be obtained using these tests. Finally, we will use the 

samples obtained at the time of diagnosis to determine if kappa:lambda ratios 

remain aberrant during later stages of the disease. Data from these tests will be 

used to determine if kappa:lambda ratios are predictive of the development of 

acute GVHD. 
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1 Introduction 

This document summarizes an analysis of relative protein expression using iTRAQ. The reporter 
ion peak area measurements supplied by the ABI software are used to estimate treatment-dependent 
peptide and protein relative expression. Estimation is accomplished using a Bayesian approach 
with the model given below. The document includes a protein relative expression summary and 
a per-protein detailed analysis. The document is internally hyperlinked and linked externally to 
NCBI. 

2 Experiment and Model Description 

2.1 Experiment Design 

The report summarizes data from one or more iTRAQ experiments addressing a common com­
parison. The experiment design, used in this analysis, is given in the table below. 

Experiment Treatment Channel Sample 
1 A Control 113 S1 
2 A Case 114 82 
3 A Case 115 83 
4 A Control 116 S4 
5 A Control 117 S5 
6 A Control 118 S6 
7 A Case 119 S7 
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2.2 Input Files 

Data for this analysis was extracted from the following tandem mass spectra (MSMS) summary 
files. 

Experiment MSMS Summary File 
A 07.06.10_MUSC.csv 

2.3 Statistical Model 

The following statistical model was used to estimate the treatment-dependent effects. 

Loglntensity - Channel + Spectrum + Protein + Peptide + Protein:Treatment + Peptide:Treatment 

3 Data Summary 

The data supplied in the MSMS summary is filtered to remove unidentified proteins, contaminants, 
and peptides containing selected modifications. The following table sumarizes the data provided 
and used in the analysis. 

Supplied Spectra 
Unidentified Spectra 
Disallowed Modifications 
Spectra from Contaminants 
Missing Data 
Low Confidence Spectra 
Degenerate Peptides 
Remaining Spectra 
Unique Proteins 
Unique Peptides 
Model R2 

4 Protein Summary 

A 
1106 
857 

2 
4 

13 
857 
46 

Combined 
1106 
857 

2 
4 

13 
857 
46 

184 
30 

120 
0.752 

Each protein identified in one or more of the MSMS summaries is listed below in decreasing order 
of expression change magnitude. The median and estimated credible interval for each protein is 
given to the left in the table. Proteins identified by a single peptide are listed in a separate table. 

4.1 Identified Proteins 

iTRAQ Data Analysis Report 2 
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0.25 0.5 2 4 
..................... . ............ . ............................................... Peptides Spectra Coverage Protein 

<oj IJ 3 4 NaN Ig gamma-3 chain C region OS=Homo sapiens GN=IGHG3 PE=1 SV=2 
y : ;,J 5 6 NaN Ig lambda chain C regions OS=Homo sapiens GN=IGLC1 PE=1 SV=1 

", .. w.wmmu.w\).w .. "l-"w .. ,,,,,,,, 2 2 NaN Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2 
• .. . ...... \i ... " .• tj) .+." . 6 17 NaN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 
............................... f.J v " 8 8 NaN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 

'" V >Q 2 2 NaN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=3 
.t ....... -" .....• -~w ... ~." ........... «1 2 5 NaN Ig mu heavy chain disease protein OS=Homo sapiens PE=1 SV=1 

: ~ .. 2 2 NaN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 
· .. · .. · .. · .. · .. ··· .. ·· .. · .. ···· ... ,···,··· .. ~·.,·f··· .. ·· ... · .. ··· 6 14 NaN Ig kappa cha.in C region OS=Homo sapiens GN=IGKC PE=1 SV=1 

'" ~ 5 5 NaN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 
.;,J 12 17 NaN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 

... "w~.; .. " 40 67 NaN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=1 
...... :..J v '" 2 2 NaN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 

......................... .. Q -.;, ... 8 8 NaN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 
................. w •.••. wQ w ....... " ... "" ..... ~ 2 2 NaN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=2 

4.2 Proteins Identified by a Single Peptide 

0.25 0.5 2 

., ............... m··· .. G ... ········· .. · ... 
w·"''' .. ·• .. ·-··"_w~,, ........... w •••• wm .... .a 

\0) ~ <oj 

..I -JJ ... 
................... ................ ~ ....... " ... ....... . 

~.w .•••. , •. ""' ... w •• w.~ .•••• ; ••..• w.w ....... .w., 

.. - .. w ••..••. .w .•.••• ~ •• \i) .......... w.w.w ......... .. 

............ , ••••••• "'~, ........... .-N.w ... .. 

........................... ;J G ,,; .... 
~ 

~ uo ....... , ...... " ..... t» ....................... w." 
w V 

.. ~ .. 
.............................. ~ v · .. · 

~ .. . 

5 Protein Details 

4 
Peptides Spectra Coverage Protein 

NaN 
NaN 
NaN 
NaN 
NaN 
NaN 

1 NaN 
6 NaN 
1 NaN 
1 NaN 
3 NaN 
2 NaN 

NaN 
NaN 
NaN 

Immunoglobulin J chain OS=Homo sapiens GNdGJ PE=1 SV=4 
Ig kappa chain V-I region AU OS=Homo sapiens PE=1 SV=1 
Lysine-specific demethylase 2B OS=Homo sapiens GN=KDM2B PE=1 SV=1 
Collagen alpha-1(XV) chain OS=Homo sapiens GN=COL15A1 PE=1 SV=2 
Ig heavy chain V-III region VH26 OS=Homo sapiens PE=1 SV=1 
Dedicator of cytokinesis protein 1 OS=Homo sapiens GN=DOCK1 PE=1 SV=2 
EF-hand calcium-binding domain-containing protein 2 OS=Homo sapiens GN=EFCAB2 PE=2 SV=1 
Ig heavy chain V-III region TEl OS=Homo sapiens PE=1 SV=1 
Complement C4-B OS=Homo sapiens GN=C4B PE=1 SV=1; Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV 
Abnormal spindle-like microcephaly-associated protein OS=Homo sapiens GN=ASPM PE=1 SV=2 
Ferritin light chain OS=Homo sapiens GN=FTl PE=1 SV=2 
DENN domain-containing protein 4B OS=Homo sapiens GN=DENND4B PE=1 SV=4 
Transmembrane protease, serine 13 OS=Homo sapiens GN=TMPRSS13 PE=2 SV:2 
Histidine-rich glycoprotein OS=Homo sapiens GN=HRG PE=1 SV=1 
Sulfate transporter OS=Homo sapiens GN=SlC26A2 PE=1 SV=2 

A detailed summary of each protein is given below. These sections include peptide relative ex­
pression estimates in addition to protein-level estimates. 
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5.1 Immunoglobulin J chain OS=Homo sapiens GN=IGJ PE=1 SV=4 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

splP01591 iIGJ ..... HUMAN 
0.713 
0.717 
(0.362, 1.35) 0.25 0.5 

1 ~,., .. ",,,,.,."w.w"_.{j)'.w"'~WNN"""""'N-W 

1 
NaN 

2 4 
A 2.5 50 97.5 Sequence 
1 0.31 0.61 1.2 SSEDPNEDIVER 

5.2 Ig kappa chain V-I region AU OS=Homo sapiens PE=1 SV=1 

Protein Accession spl P015941 KV1 02_HUMAN 
0.717 
0.722 
(0.358, 1.37) 0.25 0.5 2 4 

A 2.5 50 97.5 Sequence 

Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

1 ~WN""N"No'.w"NNN··W······No'''''·''''·'···'''''N'1# 1 0.30 0.62 1.2 DIQMTQSPSSLSASVGDR 

1 
NaN 

5.3 Ig gamma-3 chain C region OS=Homo sapiens GN=IGHG3 PE=1 SV=2 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spl P018601IGHG3_HUMAN 
1.37 
1.36 
(0.857, 2.19) 
3 
4 
NaN 

0.25 0.5 2 4 

.., .............. .. 

A 2.5 50 97.5 Sequence 
2 0.74 1.2 2.1 ALPAPIEK 
1 0.94 1.7 3.1 EPQVYTLPPSREEMTK 
1 0.8 1.4 2.5 TLPPSREEMTK 

5.4 Ig lambda chain C regions OS=Homo sapiens GN=IGLC1 PE=1 SV=1 

Protein Accession spIP01842iLAC_HUMAN 
1.35 
1.35 
(0.884,2.07) 
5 

0.25 0.5 

;,J 
V 

, "), ... 

4 

>J- .... .. 

A 2.5 50 97.5 Sequence 
2 0.87 1.4 2.3 AGVETTTPSK 
1 0.71 1.2 2.2 SLTPEQWK 
1 0.78 1.4 2.4 ADSSPVK 
1 0.9 1.6 2.9 AGVETTTPSKQSNNK 

Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

6 
VJ 

I,j) 1 0.76 1.3 2.4 AAPSVTLFPPSSEELQANK 

NaN 
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5.5 Lysine-specific demethylase 28 OS=Homo sapiens GN=KDM28 PE=1 SV=1 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spIQ8NHM5IKDM28_HUMAN 
1.31 
1.30 
(0.685, 2.53) 0.25 0.5 

1 HHH.H.... V 

1 
NaN 

2 4 
A 2.5 50 97.5 Sequence 
1 0.76 1.5 2.9 QSDIFLGD 

5.6 Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spi P018'76i IGHA 1HH.HUMAN 
0.788 
0.789 
(0.45, 1.37) 
2 
2 
NaN 

0.25 0.5 

"'·······,····,····,w··········,···w ·,w····,···"""'······ .. ·"".~ 

1o' .• " •.. w .• , ....... w·····'v ·" .... ···W .••.• A"' .... ~ 

2 4 
A 2.5 50 97.5 Sequence 
1 0.43 0.8 1.5 SAVQGPPER 
1 0.37 0.7 1.3 QEPSQGTTTF 

5.7 Collagen alpha-1(XV) chain OS=Homo sapiens GN=COL 15A1 PE=1 SV=2 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spIP39059!COFA1 ..... HUMAN 
1.26 
1.26 
(0.664, 2.44) 0.2? ..... ~.~ ................... HHH.H ... ~.HH 
1 '" t,j 

1 
NaN 

4 
A 2.5 50 97.5 Sequence 
1 0.73 1.4 2.7 GATETASQ 

5.8 Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

splP01871 iIGHM .. __ HUMAN 
0.803 0.25 0.5 

0.804 
(0.565, 1.14) 
6 
17 
NaN 

.. ... N."N{i) .. "" ....... ~ 
~ ...... , ...... , ... w\) .. w .•• , •.••.•.•. ; .•... .., 

.HHH ... HHHHH <;H.HH.\j H.HH·WH ..... .. 
···························u·...,w ......... ~ .... , .. .., ... w~ 

~_ ....... w .• , .•. w .••• ~ •.•. , • .w.v.v." ........ .. 

.; .... , .. , ... w .. , ............. f/I.wm ........... v ........ ,'<1 

iTRAQ Data Analysis Report 

2 4 
A 2.5 50 97.5 Sequence 
5 0.52 0.75 1.1 NVPLPVIAELPPK 
2 0.42 0.69 1.1 QIQVSWLR 
6 0.51 0.74 1.1 QVGSGVTTDQVQAEAK 
2 0.52 0.84 1.4 VQHPNGNK 
1 0.5 0.87 1.5 GFPSVLR 
1 0.49 0.85 1.5 QNGEAVK 

5 
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5.9 Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spIP02675iFIBB HUMAN 
1 .23 . a~'25 0.5 

1.23 H.HH .. H .. .. H.H. <;> 

(0.852, 1.79) 
8 
8 
NaN 

. ... 

HHHHHHHHHHHHH'HH'~ 

V 
!.J 

V 
t,J 

",J 

2 4 

; ~ ..... . 

~.~ ..... . 

5.10 Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=3 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

splP02751 !FINCH".HUMAN 
1.23 
1.22 
(0.707, 2.17) 

0.25 0.5 

2 
2 
NaN 

2 4 

A 2.5 50 97.5 Sequence 
1 0.74 1.3 2.3 EEAPSLRPAPPPISGGGYR 
1 0.82 1.4 2.5 GGETSEMYLlQPDSSVKPYR 
1 0.86 1.5 2.6 KGGETSEMYLlQPDSSVKPYR 
1 0.6 1.1 1.8 QGFGNVATNTDGK 
1 0.6 1.1 1.9 EDGGGWWYNR 
1 0.69 1.2 2.1 QDGSVDFGR 
1 0.82 1.4 2.5 AAATQK 
1 0.64 1.1 1.9 DNENVVNEYSSELEK 

A 2.5 50 97.5 Sequence 
1 0.73 1.4 2.6 GNQESPK 
1 0.66 1.2 2.3 TKTETITGFQVDAVPANGQTPIQR 

5.11 Ig mu heavy chain disease protein OS=Homo sapiens PE=1 SV=1 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spIP04220!MUCB"H.HUMAN 
0.833 
0.832 
(0.507, 1.37) 
2 
5 
NaN 

0.25 0.5 

~v.w··-···"'·~··0··~··""'''······'···'' 
HHHHH'HHHHH~ HHHH'~H' "'''WHHH.H 

2 4 
A 2.5 50 97.5 Sequence 
1 0.49 0.88 1.6 QVGSGVTTDEVEAEAK 
4 0.47 0.72 1.1 QDGEAVK 

5.12 C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

sp jP04003!C4BPA_HUMAN 
1.19 
1.18 

0.25 
(0.684, 2.08) 

0.5 

................................. ~ 

2 HH.HHHH.HH.HH.HH .. HH .... 
2 
NaN 

iTRAQ Data Analysis Report 

4 
A 2.5 50 97.5 Sequence 
1 0.65 1.2 2.3 LSLEIEQLELQR 
1 0.69 1.3 2.4 TWYPEVPK 

6 
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5.13 Ig kappa chain C region OS=Homo sapiens GN=IGKC PE=1 SV=1 

Protein Accession spi P01834i IGKC ..... HUMAN 
0.845 0.25 0.5 2 4 
0.84 7 ············ .. · .. · .... · .... ' .... · ....... · ....... w .... "· .. ,, ..... ~··: .. : .. ,· ..... ~ .. , .. w· .. .w ...... ~ .. • ........ ·" ...... · .... • .............. • 

(0.586, 1.21) ~ .......................... t#.w .................. ~ 
. ...... w ............ " ..... ~ ...... , .... w .•.• w .....•. «1 

A 2.5 50 97.5 Sequence 
3 0.61 0.94 1.4 IFPPSDEQLK 
2 0.52 0.85 1.4 LLNNFYPR 
1 0.52 0.9 1.6 SQESVTEQDSK 

Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

6 
14 
NaN 

.................. .., ..... , .......... ~ .. ··· .. ··· .... v ·· .. 

,g · ........ G " .. · 
1 0.41 0.72 1.2 TVAAPSVFIFPPSDEQLK 
1 0.5 0.87 1.5 SVVCLLNNFYPR 
6 0.5 0.73 1.1 VDNALQSGNSQESVTEQDSK 

5.14 Ig heavy chain V-III region VH26 OS=Homo sapiens PE=1 SV=1 

Protein Accession spIP01764IHV303 __ HUMAN 
0.851 
0.854 
(0.437, 1.65) 0.25 0.5 2 4 

A 2.5 50 97.5 Sequence 

Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

1 ..., .... m •• ;.w ..... w ....... w ... (.j.,.w .. , .. w ............ , ......... ,~ 1 0.41 0.8 1.6 EVQLLESGGGLVQPGGSLR 

1 
NaN 

5.15 Dedicator of cytokinesis protein 1 OS=Homo sapiens GN=DOCK1 PE=1 
SV=2 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

splQ141851 DOCK 1 ...... HUMAN 
0.853 
0.856 
(0.437, 1.61) o'?~ .......... ~:.~ .. . 2 

1 .......... .. .... ·v '" ...... Q, ... , ......... ~ ...... ,' .... .. 

1 
NaN 

4 
A 2.5 50 97.5 Sequence 
1 0.40 0.79 1.6 GSCTISK 

5.16 EF-hand calcium-binding domain-containing protein 2 OS=Homo sapiens 
GN=EFCA82 PE=2 SV=1 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

sp!Q5VUJ9IEFCB2_HUMAN 
0.86 
0.864 
(0.447, 1.66) 0.25 0.5 
1 ...,., ....... , .. , .............. w .... ~w ... , .............. w .•• w ••.••• <W 

1 
NaN 

iTRAQ Data Analysis Report 

4 
A 2.5 50 97.5 Sequence 
1 0.41 0.81 1.6 FLPVMTEILLER 

7 
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5.17 Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

sp I P02768! ALBU _H U MAN 
1.16 
1.16 
(0.753, 1.78) 
5 
5 
NaN 

0.25 0.5 2 4 

,~ ..... . 

: '" 

A 2.5 50 97.5 Sequence 
1 0.66 1.2 2.1 AEFAEVSK 
1 0.66 1.2 2.1 AVMDDFAAFVEK 
1 0.63 1.1 2 LDELRDEGK 
1 0.7 1.2 2.2 LVAASQAALGL 
1 0.66 1.2 2.0 LVNEVTEFAK 

5.18 Ig heavy chain V-III region TEl OS=Homo sapiens PE=1 SV=1 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spIP01 T771HV316 .... HUMAN 
0.867 
0.869 
(0.51,1.47) 
1 
6 
NaN 

0.25 0.5 
........................... , ..... . 

2 4 
A 2.5 50 97.5 Sequence 
6 0.55 0.8 1.2 EVQLVESGGGLVQPGGSLR 

5.19 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 

0.25 0.5 2 4 

Protein Accession spi P02671 ! FIBA ..... HUMAN A 2.5 50 97.5 Sequence 
~ V ;w 2 0.83 1.3 2.1 ADSGEGDFLAEGGGVR 

Mean Expression Ratio 1.14 ........................... , ... ...... .; ~ ~ ..... 1 0.65 1.1 1.9 DSHSLTTNIMEILR 

Median Expression Ratio 1.14 
........................... , ........ .; v "'1'" 1 0.65 1.1 1.9 DYEDQQK 

:...J :<,i 2 0.82 1.3 2.1 GGSTSYGTGSETESPR 

Credible Interval (0.83, 1.55) .; ~ iQ! 3 0.8 1.2 1.9 G LlDEVNQDFTNR 

Associated Peptides 12 
,~ ~ w f 1 0.62 1.1 1.8 GSESGIFTNTK 

.......................... ,." ...... ~ ." ..... <W ...... : .... .. 1 0.54 0.94 1.6 NPSSAGSWNSGSSGPGSTGNR 

Associated Spectra 17 ~ .~ 1 0.68 1.2 2 NSLFEYQK 
~ j 1 0.66 1.1 1.9 QLEQVIAK 

Coverage NaN ~'" ~ ><i 2 0.75 1.2 1.9 TFPGFFSPMLGEFVSETESR 
oJ V .. ;. 1 0.63 1.1 1.8 QHLPLIK 

·······························v .~ ,-4 ; ....... 1 0.63 1.1 1.9 EVDLKDYEDQQK 

iTRAQ Data Analysis Report 8 
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5.20 Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=1 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

0.25 0.5 2 

Ir"···"··"·-Q--·-·~···"·<a 

............. ,. <# ....... ~ ........... \iI .... ' 

...................... I<j· ........ ···~ ···,· ........ ·w· 

i.J .. • 
1I •. w ...... Q-........... v, 

<ay ......• w.w··M' 0 ",.,,-..... · .. ···~ 

............................. ............ 1;) .. w, .... ....... ' 

~ ................... m •.•• \j., ............. ~ 
w-, ............ ,. ...•. ~ ......... w ......... v •• @ 

<# ............. w~ ... , ....... w·w 

... y ." ~. · .. · v .......... ; ... .. 

.... y ,, \iI , ....... .. 

spi PO 1 023IA2MG_HUrvrA.N~~~~·.::=:~ 
0.889 ··· <# ····\) .., "' ·-+· 

,jjo .. , .......... Q ..... w ••• ,j; 

0.889 W hwn •• wt.} ... w • .,) 

( 0 . 70 1, 1. 1 3 ) " _WY""" \i) ...M •• "Y v,) 

40 
.. ....... Q) .... .. 

........ · ................ Ii .. · .... ·"··,~.· ... · .. ··«j ........ ·;· 

6 7 ~ ............. ,.y •• ,...~ .......... w." .... .. 

~ •...•... w .............. Q-:, ........ , ...•••...... ~ 
NaN . y w.w •.. \) .• w·,.. ... ·· w 

................. y .......... \) .......... "" .. . 

y ... " ~ " 

..,. ... w"",.. ...•. " •. t> .... "w.w.w .• v,) 

,,···· .................. ·v ··,·w .......... w ••• \11 

.. ........ Q" .. h ...... '" 

....................... , ... ..... ,. .... ,..,.. ... Q .... ,. .......... "' ...... ' 
. ;,J ... ·.w ... .w<N···O ······.wm ........... ~ 

@ W .• "WN""W.~ .. "~"."" . ... 

v <m.w.w ....... '4;) ........ , .............. ~ 
............... <# .•.. y ..... (;) ...... > ....... ~ ........ +. 

.. ,,:w .... ,...~ ........ >it 

~N.'N.'w •••• N.' •••• ~ ... m.,.. ......... , ..•.. '" 

.,) ...... ,..",_ ..... \;;) .• ,'".,._ .......... \0 

.~ .............. ~ ......... ~ 

......................... ~ ... <X •• ,.y .. , .. 4>.~~>~.m>."'. . ......... ,; ..... 

4 
A 2.5 50 97.5 Sequence 
1 0.43 0.72 1.2 AAQVTIQSSGTFSSK 
1 0.55 0.92 1.6 AFTNSK 
1 0.5 0.84 1.4 ALAGNQDKR 
1 0.62 1.0 1.8 ALLAYAFALAGNQDKR 
4 0.65 0.97 1.4 FEVQVTVPK 
1 0.52 0.87 1.5 FTVLQDVPVR 
2 0.61 0.96 1.5 GEAFTLK 
1 0.54 0.9 1.5 GPTQEFK 
1 0.56 0.94 1.6 HTETTEK 
4 0.58 0.86 1.3 IAQWQSFQLEGGLK 
3 0.57 0.88 1.3 LHTEAQIQEEGTVVELTGR 
2 0.54 0.86 1.4 LPPNVVEESAR 
2 0.63 1 1.6 NEDSLVFVQTDK 
1 0.48 0.8 1.3 NQGNTWLTAF 
8 0.62 0.87 1.2 QFSFPLSSEPFQGSYK 
1 0.54 0.92 1.5 QTVSWAVTPK 
3 0.64 0.97 1.5 SASNMAIVDVK 
3 0.6 0.92 1.4 SLNEEAVK 
1 0.52 0.88 1.5 TEHPFTVEEFVLPK 
4 0.65 0.96 1.4 VGFYESDVMGR 
1 0.55 0.92 1.5 VSVQLEASPAFLAVPVEK 

0.53 0.9 1.5 LVHVEEPHTETVR 
0.54 0.91 1.5 LLlYAVLPTGDVIGDSAK 

1 0.59 1 1.7 TPVSSTNEK 
1 0.47 0.78 1.3 FQVDNNNR 

0.52 0.87 1.5 FRQGIPFFGQVR 
0.54 0.9 1.5 QQNAQGGFSSTQDTVVALHALSK 

1 0.58 0.97 1.6 AIGYLNTGYQR 
1 0.54 0.9 1.5 DLKPAIVK 
1 0.56 0.93 1.6 RKEYEMK 

0.56 0.93 1.6 KEYEMK 
0.53 0.9 1.5 MCPQLQQYEMHGPEGLR 

1 0.47 0.79 1.3 VIFIR 
1 0.47 0.79 1.3 IAQWQSF 

0.45 o.n 1.3 QLEGGLK 
0.58 0.97 1.6 GVPIPNKVIFIR 

1 0.53 0.89 1.5 SSGSLLNNAIK 
1 0.53 0.9 1.5 VVVQK 
1 0.47 0.8 1.3 DTVIKPLLVEPEGLEK 
3 0.49 0.75 1.1 QGIPFFGQVR 

5.21 Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spl P026791 FIBG_HUMAN 
1.10 
1.09 

0.25 
(0.638, 1.91) 

0.5 

................................. -,4 

2 
2 
NaN 

iTRAQ Data Analysis Report 

2 4 
A 2.5 50 97.5 Sequence 
1 0.6 1.1 2.1 YLQEIYNSNNQK 
1 0.6 1.1 2.1 VGPEADKYR 

9 
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5.22 Complement C4-8 OS=Homo sapiens GN=C48 PE=1 SV=1; Complement 
C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spi POCOL51 C04B ..... HUMAN sp I POCOL41 C04A ..... H U MAN 
1.10 
1.09 
(0.575, 2.09) 0.2 ... 5 ..................... 0 ....... 5 ............................. , .... ...................... 2., ......................... . 4. A 2.5 50 97.5 Sequence 

1 1 0.6 1.1 2.2 ALEILQEEDLIDEDDIPVR 

1 
NaN 

5.23 Abnormal spindle-like microcephaly-associated protein OS=Homo sapiens 
GN=ASPM PE=1 SV=2 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spIQ8IZT6!ASPM ...... HUMAN 
1.06 
1.06 
(0.546, 2.06) 0.25 0.5 

1 
1 
NaN 

2 4 
A 2.5 50 97.5 Sequence 
1 0.55 1.1 2.1 LQIRSSV 

5.24 Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

sp1P01024!C03 HUMAN 
1 .05 . 0:25 0.5 2 

v .... "" .•. ·.·,"oy.,Q).··,,,.,·.,·.w.·,,·v 

1.05 .; '>iJ " ! 

(0.717, 1.53) .... '· .. .. vJ ~ I;j .; ,. ~ . 

8 . "'m" .. wnmm .. {# .... mum" .. .w.'" .! 

8 \;#', .. " •... ,_ .. _.\j .. , ... "' .. WNN • ..,.... ! 
.. VJ '"f 

NaN ..... ............ ... ~ (. ..... . 

4 
A 2.5 50 97.5 Sequence 
1 0.49 0.87 1.5 EDIPPADLSDQVPDTESETR 
1 0.59 1.0 1.8 EGVQKEDIPPADLSDQVPDTESETR 
1 0.6 1.0 1.8 ILLQGTPVAQMTEDAVDAER 
1 0.71 1.3 2.2 SGSDEVQVGQQR 
1 0.56 1 1.7 TSSSGQQTAQR 
1 0.55 0.96 1.7 DFDFVPPVVR 
1 0.64 1.1 2.0 SNLDEDIIAEENIVSR 
1 0.68 1.2 2.0 KQELSEAEQATR 

5.25 von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=2 

Protein Accession spi P04275!VWF __ HUMAN 
0.958 
0.96 

0.25 0.5 2 

\:i) ... : 

Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

(0.54, 1.67) 
2 <#< •.•.•. \) ...... '" 

2 
NaN 

iTRAQ Data Analysis Report 

4 
A 2.5 50 97.5 Sequence 
1 0.55 1.0 1.9 AVVILVTDVSVDSVDAAADAAR 
1 0.47 0.89 1.6 VKEEVFIQQR 

10 
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5.26 Ferritin light chain OS=Homo sapiens GN=FTL PE=1 SV=2 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

sp I P02792! FR I L ...... H U MAN 
0.957 
0.963 
(0.544, 1.68) 0.25 0.5 

1 ,. ~.w.ww.v.w~".v ......... ,.~ 

3 
NaN 

2 4 
A 2.5 50 97.5 Sequence 
3 0.59 0.93 1.5 LGGPEAGLGEVLFER 

5.27 DENN domain-containing protein 48 OS=Homo sapiens GN=DENND48 
PE=1 SV=4 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spI075064IDEN4B_HUMAN 
1.03 
1.03 
(0.567, 1.89) 0.25 0.5 

1 ·· .. · .. ····.... .. ~ 

2 
NaN 

2 4 
A 2.5 50 97.5 Sequence 
2 0.6 1.0 1.8 AGGRQDEAGTPRR 

5.28 Transmembrane protease, serine 13 OS=Homo sapiens GN=TMPRSS13 
PE=2 SV=2 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spIQ9BYE21TMPSD_HUMAN 
1.02 
1.02 
(0.533, 1.97) 0.25 0.5 

1 v 
1 
NaN 

2 4 
A 2.5 50 97.5 Sequence 
1 0.53 1.0 2.0 NKPGVVTK 

5.29 Histidine-rich glycoprotein OS=Homo sapiens GN=HRG PE=1 SV=1 

Protein Accession spIP04'1961HRG_HUMAN 
1.00 
1.00 
(0.521, 1 .93) 0.25 0.5 4 

A 2.5 50 97.5 Sequence 

Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

1 ~ 1 0.52 1 2.0 DHHHPHKPHEHGPPPPPDER 

1 
NaN 

iTRAQ Data Analysis Report 11 
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5.30 Sulfate transporter OS=Homo sapiens GN=SLC26A2 PE=1 SV=2 

Protein Accession 
Mean Expression Ratio 
Median Expression Ratio 
Credible Interval 
Associated Peptides 
Associated Spectra 
Coverage 

spi P50443iS26A2._HUMAN 
1 
1 

0.25 0.5 2 (0.52, 1.91) 
1 •••••••• "' ••••••••••••• ~ ••••••••• P ~ •••••• 

1 
NaN 

iTRAQ Data Analysis Report 

4 
A 2.5 50 97.5 Sequence 
1 0.52 0.99 2.0 MSSESK 

12 
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